Home
Class 12
CHEMISTRY
Arrange the following wavelenghts (lamda...

Arrange the following wavelenghts `(lamda)`of given emission lines of H atoms in increasing order Choose the correct option (1) `lamda_(4)ltlamda_(3)ltlamda_(2)ltlamda_(1)` (2)`lamda_(4)ltlamda_(2)ltlamda_(3)ltlamda_(1)` (3) `lamda_(1)ltlamda_(2)ltlamda_(3)ltlamda_(4)` (4) `lamda_(1)ltlamda_(3)ltlamda_(2)ltlamda_(4)`

A

`n=3 overset(lamda_(1))rarr n=1`

B

`n=12 overset(lamda_(3))rarr n=10`

C

`n=5 overset(lamda_(2))rarr n=3`

D

`n=22 overset(lamda_(4))rarr n=20`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of arranging the wavelengths of the given emission lines of hydrogen atoms in increasing order, we will follow these steps: ### Step 1: Understand the Formula The relationship between the wavelengths of the emission lines and the energy levels of the hydrogen atom is given by the formula: \[ \frac{1}{\lambda} = R_H \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \] where \( R_H \) is the Rydberg constant, \( n_1 \) is the lower energy level, and \( n_2 \) is the higher energy level. ### Step 2: Calculate Wavelengths We will calculate the wavelengths for each transition: 1. **For \( \lambda_1 \) (Transition from 3 to 1)**: \[ \frac{1}{\lambda_1} = R_H \left( \frac{1}{1^2} - \frac{1}{3^2} \right) = R_H \left( 1 - \frac{1}{9} \right) = R_H \left( \frac{8}{9} \right) \] \[ \lambda_1 = \frac{9}{8R_H} \] 2. **For \( \lambda_2 \) (Transition from 5 to 3)**: \[ \frac{1}{\lambda_2} = R_H \left( \frac{1}{3^2} - \frac{1}{5^2} \right) = R_H \left( \frac{1}{9} - \frac{1}{25} \right) = R_H \left( \frac{25 - 9}{225} \right) = R_H \left( \frac{16}{225} \right) \] \[ \lambda_2 = \frac{225}{16R_H} \] 3. **For \( \lambda_3 \) (Transition from 12 to 10)**: \[ \frac{1}{\lambda_3} = R_H \left( \frac{1}{10^2} - \frac{1}{12^2} \right) = R_H \left( \frac{1}{100} - \frac{1}{144} \right) = R_H \left( \frac{144 - 100}{14400} \right) = R_H \left( \frac{44}{14400} \right) \] \[ \lambda_3 = \frac{14400}{44R_H} = \frac{327.27}{R_H} \] 4. **For \( \lambda_4 \) (Transition from 22 to 20)**: \[ \frac{1}{\lambda_4} = R_H \left( \frac{1}{20^2} - \frac{1}{22^2} \right) = R_H \left( \frac{1}{400} - \frac{1}{484} \right) = R_H \left( \frac{484 - 400}{193600} \right) = R_H \left( \frac{84}{193600} \right) \] \[ \lambda_4 = \frac{193600}{84R_H} = \frac{2304.76}{R_H} \] ### Step 3: Compare Wavelengths Now we will compare the calculated wavelengths: - \( \lambda_1 = \frac{9}{8R_H} \) - \( \lambda_2 = \frac{225}{16R_H} \) - \( \lambda_3 = \frac{327.27}{R_H} \) - \( \lambda_4 = \frac{2304.76}{R_H} \) ### Step 4: Arrange in Increasing Order From the calculations, we can see that: - \( \lambda_1 < \lambda_2 < \lambda_3 < \lambda_4 \) Thus, the correct order of wavelengths in increasing order is: \[ \lambda_1 < \lambda_2 < \lambda_3 < \lambda_4 \] ### Final Answer The correct option is (3) \( \lambda_1 < \lambda_2 < \lambda_3 < \lambda_4 \). ---
Promotional Banner

Topper's Solved these Questions

  • CHEMISTRY AT A GLANCE

    ALLEN|Exercise INORGANIC CHEMISTRY|300 Videos
  • CHEMISTRY AT A GLANCE

    ALLEN|Exercise ORGANIC CHEMISTRY|472 Videos
  • Chemical Equilibrium

    ALLEN|Exercise All Questions|30 Videos
  • ELECTROCHEMISTRY

    ALLEN|Exercise EXERCISE -05 [B]|38 Videos

Similar Questions

Explore conceptually related problems

The matrix A={:[(lamda_(1)^(2),lamda_(1)lamda_(2),lamda_(1)lamda_(3)),(lamda_(2)lamda_(1),lamda_(2)^(2),lamda_(2)lamda_(3)),(lamda_(3)lamda_(1),lamda_(3)lamda_(2),lamda_(3)^(2))]:} is idempotent if lamda_(1)^(2)+lamda_(2)^(2)+lamda_(3)^(2)=k where lamda_(1),lamda_(2),lamda_(3) are non-zero real numbers. Then the value of (10+k)^(2) is . . .

If |a_(i)|lt1lamda_(i)ge0 for i=1,2,3,.......nandlamda_(1)+lamda_(2)+.......+lamda_(n)=1 then the value of |lamda_(1)a_(1)+lamda_(2)a_(2)+.......+lamda_(n)a_(n)| is :

If a_(1)=a, a_(2)=b, a_(n+2)=(a_(n+1)+a_(n))/2, nge 0 then lim_(n to oo) a_(n) is (a+lamda_(1)b)/(lamda_(2)), (lamda_(1),lamda_(2) epsilonI) where lamda_(1)+lamda_(2) is _______

If alpha,beta are the roots of the equation lamda(x^(2)-x)+x+5=0 and if lamda_(1) and lamda_(2) are two values of lamda obtained from (alpha)/(beta)+(beta)/(alpha)=4 , then (lamda_(1))/(lamda_(2)^(2))+(lamda_(2))/(lamda_(1)^(2)) equals.

The wavelength of the first Lyman lines of hydrogen He^(+) and Li^(2+) ions and lamda_(1),lamda_(2)& lamda_(3) the ratio of these wavelengths is

Find the values of lamda and mu if both the roots of the equation (3lamda+1)x^(2)=(2lamda+3mu)x-3 are infinite.

The decay constant of a radioactive sample is 'lambda' . The half-life and mean life of the sample are respectively a) 1/lamda,("in"2)/lamda b) ("in"2)/lamda,1/lamda c) "in"2,1/lamda d) lamda/("in"2),1/lamda

Some energy levels of a molecule are shown in the figure. The ratio of the wavelength r=lamda_(1)lamda_(2) ,is given by:

The ration of resolving powers of an optical microscope for two wavelangths lamda_(1) =4000 Å and lamda_(2)=6000 Å is

If alpha, beta are the roots fo the equation lamda(x^(2)-x)+x+5=0 . If lamda_(1) and lamda_(2) are two values of lamda for which the roots alpha, beta are related by (alpha)/(beta)+(beta)/(alpha)=4/5 find the value of (lamda_(1))/(lamda_(2))+(lamda_(2))/(lamda_(1))