Home
Class 12
CHEMISTRY
Calculate de Broglie wavelenth of a neut...

Calculate de Broglie wavelenth of a neutron
(mass, `m=1.6xx10^(-27)` kg) moving with kinetic energy of 0.04 eV.

A

146 `"Å"`

B

14.6 `"Å"`

C

1460 `"Å"`

D

1.46 `"Å"`

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the de Broglie wavelength of a neutron given its mass and kinetic energy, we can follow these steps: ### Step 1: Convert Kinetic Energy from eV to Joules The kinetic energy (KE) is given as 0.04 eV. We need to convert this to Joules using the conversion factor \(1 \text{ eV} = 1.6 \times 10^{-19} \text{ Joules}\). \[ KE = 0.04 \text{ eV} \times 1.6 \times 10^{-19} \text{ J/eV} = 6.4 \times 10^{-21} \text{ J} \] ### Step 2: Use the de Broglie Wavelength Formula The de Broglie wavelength (\(\lambda\)) can be calculated using the formula: \[ \lambda = \frac{h}{p} \] where \(h\) is Planck's constant and \(p\) is the momentum of the particle. The momentum can be expressed in terms of kinetic energy: \[ p = \sqrt{2m \cdot KE} \] ### Step 3: Calculate Momentum Substituting the values into the momentum formula: - Mass of neutron, \(m = 1.6 \times 10^{-27} \text{ kg}\) - Kinetic energy, \(KE = 6.4 \times 10^{-21} \text{ J}\) \[ p = \sqrt{2 \cdot (1.6 \times 10^{-27} \text{ kg}) \cdot (6.4 \times 10^{-21} \text{ J})} \] Calculating this gives: \[ p = \sqrt{2 \cdot 1.6 \times 10^{-27} \cdot 6.4 \times 10^{-21}} = \sqrt{2.048 \times 10^{-46}} \approx 4.53 \times 10^{-23} \text{ kg m/s} \] ### Step 4: Calculate de Broglie Wavelength Now substituting \(p\) into the de Broglie wavelength formula: Planck's constant \(h = 6.626 \times 10^{-34} \text{ J s}\) \[ \lambda = \frac{6.626 \times 10^{-34} \text{ J s}}{4.53 \times 10^{-23} \text{ kg m/s}} \approx 1.46 \times 10^{-11} \text{ m} \] ### Step 5: Convert to Angstroms Since \(1 \text{ angstrom} = 10^{-10} \text{ m}\): \[ \lambda \approx 1.46 \times 10^{-11} \text{ m} = 0.146 \text{ angstroms} \] ### Final Answer The de Broglie wavelength of the neutron is approximately \(1.46 \times 10^{-11} \text{ m}\) or \(0.146 \text{ angstroms}\). ---

To calculate the de Broglie wavelength of a neutron given its mass and kinetic energy, we can follow these steps: ### Step 1: Convert Kinetic Energy from eV to Joules The kinetic energy (KE) is given as 0.04 eV. We need to convert this to Joules using the conversion factor \(1 \text{ eV} = 1.6 \times 10^{-19} \text{ Joules}\). \[ KE = 0.04 \text{ eV} \times 1.6 \times 10^{-19} \text{ J/eV} = 6.4 \times 10^{-21} \text{ J} \] ...
Promotional Banner

Topper's Solved these Questions

  • CHEMISTRY AT A GLANCE

    ALLEN|Exercise INORGANIC CHEMISTRY|300 Videos
  • CHEMISTRY AT A GLANCE

    ALLEN|Exercise ORGANIC CHEMISTRY|472 Videos
  • Chemical Equilibrium

    ALLEN|Exercise All Questions|30 Videos
  • ELECTROCHEMISTRY

    ALLEN|Exercise EXERCISE -05 [B]|38 Videos

Similar Questions

Explore conceptually related problems

Calculate the wavelength a particle of mass m = 6.6 xx 10^(-27) kg moving with kinetic energy 7.425 xx 10^(-13) J ( h = 6.6 xx 10^(-34) kg m^(2) s ^(-1)

Calculate the de Broglie wavelength of a ball of mass 0.1 kg moving with a speed of 30 ms^(-1)

De Broglie wavelength of 0.05 eV thermal neutron is

Calculate de - Broglie wavelength of an electron having kinetic energy 2.8xx10^(-23)J

The de Broglie wavelength of neutrons in thermal equilibrium is (given m_n=1.6xx10^(-27) kg)

A. For what kinetic energy of neutron will the associated de Broglie wavelength be 1.40xx10^(-10)m ? B. Also, find the de Broglie wavelength of a neutron, in thermal equilibrium with matter, having an average kinetic energy of ((3)/(2)) kT at 300 K . Given the mass of neutron =1:66xx10^(-27)kg and k=1.38xx10^(-23)Jkg^(-1) .

If de Broglie wavelength of an electron is 0.5467 Å, find the kinetic energy of electron in eV. Given h=6.6xx10^(-34) Js , e= 1.6xx10^(-19) C, m_e=9.11xx10^(-31) kg.

Calculate the de-Broglie wavelength of a 0.20 kg ball moving with a speed of 15 m/s

The de Broglie wavelength associated with a ball of mass 1kg having kinetic enegry 0.5J is

The de-Broglie wavelength associated with a particle of mass 10^-6 kg moving with a velocity of 10 ms^-1 , is