Home
Class 12
CHEMISTRY
Standard enthalpy of vapourisation Delta...

Standard enthalpy of vapourisation `DeltaH^(@)` forwater is `40.66 KJ mol^(-1)`.The internal energy of vapourisation of water for its 2 mol will be :-

A

`+43.76`

B

`+40.66`

C

`+37.56`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the internal energy of vaporization of water for 2 moles, we can follow these steps: ### Step-by-Step Solution: 1. **Identify the given data:** - Standard enthalpy of vaporization of water, \( \Delta H^\circ = 40.66 \, \text{kJ/mol} \) - We need to find the internal energy of vaporization for 2 moles of water. 2. **Understand the relationship between enthalpy and internal energy:** The relationship between the change in enthalpy (\( \Delta H \)) and the change in internal energy (\( \Delta E \)) can be expressed as: \[ \Delta H = \Delta E + \Delta N_g RT \] where: - \( \Delta N_g \) = change in the number of moles of gas - \( R \) = universal gas constant \( = 8.314 \, \text{J/(mol K)} \) - \( T \) = temperature in Kelvin 3. **Calculate \( \Delta N_g \):** - For the vaporization of water (liquid to gas), we have: - 1 mole of water vapor (product) - 0 moles of water (reactant) - Thus, \( \Delta N_g = 1 - 0 = 1 \). 4. **Convert the gas constant \( R \) to kJ:** \[ R = 8.314 \, \text{J/(mol K)} = 0.008314 \, \text{kJ/(mol K)} \] 5. **Convert the boiling point of water to Kelvin:** - The boiling point of water is \( 100^\circ C \). - In Kelvin, \( T = 100 + 273 = 373 \, \text{K} \). 6. **Substitute the values into the equation:** \[ 40.66 = \Delta E + (1)(0.008314)(373) \] 7. **Calculate \( \Delta N_g RT \):** \[ \Delta N_g RT = 0.008314 \times 373 \approx 3.10 \, \text{kJ} \] 8. **Rearranging the equation to find \( \Delta E \):** \[ \Delta E = 40.66 - 3.10 = 37.56 \, \text{kJ/mol} \] 9. **Calculate for 2 moles:** \[ \Delta E \text{ for 2 moles} = 2 \times 37.56 = 75.12 \, \text{kJ} \] ### Final Answer: The internal energy of vaporization of water for 2 moles is approximately **75.12 kJ**.

To find the internal energy of vaporization of water for 2 moles, we can follow these steps: ### Step-by-Step Solution: 1. **Identify the given data:** - Standard enthalpy of vaporization of water, \( \Delta H^\circ = 40.66 \, \text{kJ/mol} \) - We need to find the internal energy of vaporization for 2 moles of water. ...
Promotional Banner

Topper's Solved these Questions

  • CHEMISTRY AT A GLANCE

    ALLEN|Exercise INORGANIC CHEMISTRY|300 Videos
  • CHEMISTRY AT A GLANCE

    ALLEN|Exercise ORGANIC CHEMISTRY|472 Videos
  • Chemical Equilibrium

    ALLEN|Exercise All Questions|30 Videos
  • ELECTROCHEMISTRY

    ALLEN|Exercise EXERCISE -05 [B]|38 Videos

Similar Questions

Explore conceptually related problems

Standard enthalpy of vapourisation Delta_("vap")H^(-) for water at 100^@C is 40.66 kJ mol^(-1) . The internal energy of vapourisation of water at 100^@C (in kJ mol^(-1) ) is (Assume water vapour to behave like an ideal gas).

Standard enthalpy of vapourisation Delta_(vap) H^- for water at 100° C is 56.66 kJmol^(–1) . The internal energy of vapourisation of water at 100°C (in kJmol^(–1) ) is ?

Standard enthalpy of vapourisation Delta_(vap) H^- for water at 100° C is 50.66 kJmol^(–1) . The internal energy of vapourisation of water at 100°C (in kJmol^(–1) ) is ?

Standard enthalpy of vapourisation Delta_(vap) H^- for water at 100° C is 44.66 kJmol^(–1) . The internal energy of vapourisation of water at 100°C (in kJmol^(–1) ) is ?

Standard enthalpy of vaporisation DeltaV_(vap).H^(Theta) for water at 100^(@)C is 40.66kJmol^(-1) .The internal energy of Vaporization of water at 100^(@)C("in kJ mol"^(-1)) is

ΔHvap for water is 40.7 KJ mol^(−1) . The entropy of vaporization of water is:

The enthalpy of vaporization for water is 186.5 KJ mol^(−1) ,the entropy of its vaporization will be:

The enthalpy of vaporisation of water at 100^(@)C is 40.63 KJ mol^(-1) . The value Delta E for the process would be :-

The enthalpy of neutralisation of a strong acid by a strong base is -57.32 kJ mol^(-1) . The enthalpy of formation of water is -285.84 kJ mol^(-1) . The enthalpy of formation of hydroxyl ion is

The enthalpy of neutralisation of a strong acid by a string base is -57.32 kJ mol^(-1) . The enthalpy of formation of water is -285.84 kJ mol^(-1) . The enthalpy of formation of hydroxyl ion is