Home
Class 12
CHEMISTRY
For the reaction :- N(2)O(4(g))hArr2NO(...

For the reaction :-
`N_(2)O_(4(g))hArr2NO_(2(g))`
`DeltaU=2.0Kcal,DeltaS=50CalK^(-1)at300K` calculate `DeltaG`?

A

`+12.4K Cal`

B

`-12.4K Cal`

C

`-6.4K Cal`

D

`+6.4K Cal`

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the Gibbs free energy change (ΔG) for the reaction \( N_2O_4(g) \rightleftharpoons 2NO_2(g) \), we will follow these steps: ### Step 1: Understand the given values We have: - \( \Delta U = 2.0 \, \text{kcal} \) - \( \Delta S = 50 \, \text{cal K}^{-1} \) - Temperature \( T = 300 \, \text{K} \) ### Step 2: Convert units where necessary Since \( \Delta S \) is given in calories, we need to convert it to kilocalories for consistency with \( \Delta U \): \[ \Delta S = 50 \, \text{cal K}^{-1} = \frac{50}{1000} \, \text{kcal K}^{-1} = 0.05 \, \text{kcal K}^{-1} \] ### Step 3: Calculate \( \Delta H \) We can use the relation between \( \Delta H \) and \( \Delta U \): \[ \Delta H = \Delta U + \Delta N_g \cdot R \cdot T \] Where: - \( \Delta N_g = N_p - N_r \) (moles of products - moles of reactants) - For the reaction, \( N_p = 2 \) (from \( 2NO_2 \)) and \( N_r = 1 \) (from \( N_2O_4 \)), thus: \[ \Delta N_g = 2 - 1 = 1 \] The gas constant \( R \) in calories is \( 2 \, \text{cal K}^{-1} \, \text{mol}^{-1} \). Therefore: \[ \Delta H = 2.0 \, \text{kcal} + (1 \cdot 2 \, \text{cal K}^{-1} \cdot 300 \, \text{K}) \cdot \frac{1 \, \text{kcal}}{1000 \, \text{cal}} \] Calculating the second term: \[ 1 \cdot 2 \cdot 300 = 600 \, \text{cal} = 0.6 \, \text{kcal} \] Thus: \[ \Delta H = 2.0 \, \text{kcal} + 0.6 \, \text{kcal} = 2.6 \, \text{kcal} \] ### Step 4: Calculate \( \Delta G \) Now we can calculate \( \Delta G \) using the formula: \[ \Delta G = \Delta H - T \Delta S \] Substituting the values: \[ \Delta G = 2.6 \, \text{kcal} - (300 \, \text{K} \cdot 0.05 \, \text{kcal K}^{-1}) \] Calculating \( T \Delta S \): \[ 300 \cdot 0.05 = 15 \, \text{kcal} \] Thus: \[ \Delta G = 2.6 \, \text{kcal} - 15 \, \text{kcal} = -12.4 \, \text{kcal} \] ### Final Answer The value of \( \Delta G \) is: \[ \Delta G = -12.4 \, \text{kcal} \] ---

To calculate the Gibbs free energy change (ΔG) for the reaction \( N_2O_4(g) \rightleftharpoons 2NO_2(g) \), we will follow these steps: ### Step 1: Understand the given values We have: - \( \Delta U = 2.0 \, \text{kcal} \) - \( \Delta S = 50 \, \text{cal K}^{-1} \) - Temperature \( T = 300 \, \text{K} \) ...
Promotional Banner

Topper's Solved these Questions

  • CHEMISTRY AT A GLANCE

    ALLEN|Exercise INORGANIC CHEMISTRY|300 Videos
  • CHEMISTRY AT A GLANCE

    ALLEN|Exercise ORGANIC CHEMISTRY|472 Videos
  • Chemical Equilibrium

    ALLEN|Exercise All Questions|30 Videos
  • ELECTROCHEMISTRY

    ALLEN|Exercise EXERCISE -05 [B]|38 Videos

Similar Questions

Explore conceptually related problems

For the reaction: X_(2)O_(4)(l)rarr2XO_(2)(g) DeltaU=2.1kcal , DeltaS =20 "cal" K^(-1) "at" 300 K Hence DeltaG is

For the reaction: X_(2)O_(4)(l)rarr2XO_(2)(g) DeltaU=2.1 cal , DeltaS =20 "cal" K^(-1) "at" 300 K Hence DeltaG is

For the reaction X_(2)O_(4(l)) rarr 2XO_(2(g)), Delta U= 2.1 "kcal", Delta S= 20 "cal " K^(-1) at 300K, Hence Delta G is

For the reaction, X_(2)O_(4)(l)rarr2XO_(2)(g) , DeltaE=3.1Kcal , DeltaS=30cal//K at 300K . Hence DeltaG is

For the reaction, X_(2)O_(4)(l)rarr2XO_(2)(g),DeltaE=2.1Kcal , DeltaS=20cal//K at 300K . Hence DeltaG is

For the reaction. A(l)rarr 2B(g) DeltaU="2.1 k Cal, "DeltaS="20 Cal K"^(-1)" at 300K Hence DeltaG" in kcal " is ?

For the reaction at 25^(@)C, C_(2)O_(4)(l) rarr 2XO_(2)(g) Delta H =2.1 kcal and DeltaS=20 cal K^(-1) . The reaction would be :

For reaction, 2K_((g))+L_((g))rarr2M_((g)),DeltaU^(@)=-"10.5 KJ and "DeltaS^(@)=-"44.1 J K"^(-1) . Calculate DeltaG^(@) for the reaction and predict whether the reaction will be spontaneous or non-spontaneous?

For the reaction CO(g)+(1)/(2) O_(2)(g) hArr CO_(2)(g),K_(p)//K_(c) is

For the reaction at 298 K A(g) + B(g) hArr C(g) + D(g) If DeltaH^(@) =29.8 Kcal and DeltaS^(@)=0.1 Kcal K^(-1) then calculate reaction constant (k)