Home
Class 12
CHEMISTRY
The equilibrium constant of the reaction...

The equilibrium constant of the reaction :
`Zn(s)+2Ag^(+)(aq)toZn(aq)+2Ag(s),E^(@)=1.50V` at
298 K is

A

`2.6xx10^(49)`

B

`8.7xx10^(51)`

C

`6.1xx10^(30)`

D

`5.37xx10^(50)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the equilibrium constant \( K \) for the reaction \[ \text{Zn}(s) + 2\text{Ag}^+(aq) \rightleftharpoons \text{Zn}^{2+}(aq) + 2\text{Ag}(s) \] given that the standard cell potential \( E^\circ = 1.50 \, V \) at \( 298 \, K \), we can follow these steps: ### Step 1: Use the relationship between Gibbs free energy and cell potential We know that the change in Gibbs free energy (\( \Delta G^\circ \)) is related to the standard cell potential (\( E^\circ \)) by the equation: \[ \Delta G^\circ = -nFE^\circ \] where: - \( n \) = number of moles of electrons transferred in the reaction - \( F \) = Faraday's constant (\( 96500 \, C/mol \)) - \( E^\circ \) = standard cell potential ### Step 2: Identify \( n \) In the given reaction, 2 electrons are transferred (from 2 \( \text{Ag}^+ \) ions to form 2 \( \text{Ag} \) atoms). Therefore, \( n = 2 \). ### Step 3: Substitute values into the equation Now we can substitute the values into the equation: \[ \Delta G^\circ = -2 \times 96500 \, C/mol \times 1.50 \, V \] ### Step 4: Calculate \( \Delta G^\circ \) Calculating this gives: \[ \Delta G^\circ = -2 \times 96500 \times 1.50 = -289500 \, J/mol \] ### Step 5: Use the relationship between Gibbs free energy and equilibrium constant We also know that: \[ \Delta G^\circ = -2.303RT \log K \] where: - \( R \) = universal gas constant (\( 8.314 \, J/(mol \cdot K) \)) - \( T \) = temperature in Kelvin (298 K) ### Step 6: Substitute values into the equation Setting the two expressions for \( \Delta G^\circ \) equal to each other gives: \[ -289500 = -2.303 \times 8.314 \times 298 \log K \] ### Step 7: Calculate the right-hand side Calculating the right-hand side: \[ 2.303 \times 8.314 \times 298 \approx 5730.5 \] ### Step 8: Solve for \( \log K \) Now we can solve for \( \log K \): \[ 289500 = 5730.5 \log K \] \[ \log K = \frac{289500}{5730.5} \approx 50.5 \] ### Step 9: Calculate \( K \) To find \( K \), we take the antilog: \[ K = 10^{50.5} \approx 3.16 \times 10^{50} \] ### Final Answer Thus, the equilibrium constant \( K \) for the reaction is approximately: \[ K \approx 3.16 \times 10^{50} \]

To determine the equilibrium constant \( K \) for the reaction \[ \text{Zn}(s) + 2\text{Ag}^+(aq) \rightleftharpoons \text{Zn}^{2+}(aq) + 2\text{Ag}(s) \] given that the standard cell potential \( E^\circ = 1.50 \, V \) at \( 298 \, K \), we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • CHEMISTRY AT A GLANCE

    ALLEN|Exercise INORGANIC CHEMISTRY|300 Videos
  • CHEMISTRY AT A GLANCE

    ALLEN|Exercise ORGANIC CHEMISTRY|472 Videos
  • Chemical Equilibrium

    ALLEN|Exercise All Questions|30 Videos
  • ELECTROCHEMISTRY

    ALLEN|Exercise EXERCISE -05 [B]|38 Videos

Similar Questions

Explore conceptually related problems

The equilibrium constant of the reaction; Cu(s)+2Ag + (aq)⟶Cu 2+ (aq)+2Ag(s) E o =0.46V at 298K

The equivalent constant of the reaction: Cu(s)+2Ag^(+)(aq.) rarr Cu^(2+)(aq.)+2Ag(s) E^(@)=0.46 V at 298 K ,is:

Using the standerd half-cell potential listed, calculate the equilibrium constant for the reaction : Co(s)+2H^(+)(aq)toCo^(2+)(aq)+H_(2)(g)" at 298 K" Co^(2+)(aq)+2e^(-)toCo(s) E^(@)=-0.277 V

Calculate the equilibrium constant of the reaction : Cu(s)+2Ag(aq) hArrCu^(2+)(aq) +2Ag(s) E^(c-)._(cell)=0.46V

Calculate the equilibrium constant of the reaction : Cu(s)+2Ag(aq) hArrCu^(2+)(aq) +2Ag(s) E^(c-)._(cell)=0.46V

The equilibrium constant for the reactions Cu (s)+ 2Ag^(+) aq hArr Cu^(2+) (aq) +2Ag(s) is 2.0 xx 10 ^(15) " at " 278 K. Find the equilibrium concentration of Cu^(2+) (aq) if that of Ag^(+) (aq) is 1.0 xx 10 ^(-11) " mol " L^(-1)

If the standed electrode potential for a cell is 2 V at 300 K, the equilibrium constant (K) for the reaction Zn(s)+Cu^(2+)(aq) hArrZn^(2+)(aq)+Cu(s) at 300 K is approximately (R=8JK^(-1)mol^(-1),F=96000Cmol^(-1))

Given the equilibrium constant : K_(c) of the reaction : Cu(s) + 2Ag^(+)(aq) rightarrow Cu^(2+) (Aq) + 2Ag(s) is 10xx10^(15) , calculate the E_(cell)^(@) of this reaction at 298K . ([2.303 (RT)/(Ft) at 298K = 0.059V])

The equilibrium constant at 298 K for the reaction Cu(s) + 2Ag+ (aq) ⇌ Cu2+ (aq) + 2Ag(s) is 2.0 × 1015 . The concentrations of Cu2+ and Ag+ ions are 1.8 × 10-2 mol L-1 and 3.0 x 10-19 mol L-1 respectively. Is this reaction at equilibrium?

The equilibrium constant (K) for the reaction Fe^(2+)(aq)+Ag^(+)(aq)toFe^(3+)(aq)+Ag(s) will be Given E^(@)(Fe^(3+)//Fe^(2+))=0.77V, E^(@)(Ag^(+)//Ag)=0.80V