Home
Class 12
CHEMISTRY
{:(Given Fe^(+2)+2e^(-)toFe(s),,,,E^(@)=...

`{:(Given Fe^(+2)+2e^(-)toFe(s),,,,E^(@)=-0.447V),(Fe^(+2)toFe^(+3)+e^(-),,,,E^(@)=-0.771V):}`
Find `E^(@)` for the reaction `Fe^(+3)+3e^(-)toFe(s)`

A

0.34V

B

`-0.041V`

C

`+0.39V`

D

`-0.47V`

Text Solution

AI Generated Solution

The correct Answer is:
To find the standard electrode potential \( E^\circ \) for the reaction \( \text{Fe}^{3+} + 3e^- \rightarrow \text{Fe}(s) \), we can use the given half-reactions and their standard electrode potentials. Here’s a step-by-step solution: ### Step 1: Write the given half-reactions and their potentials 1. The first half-reaction is: \[ \text{Fe}^{2+} + 2e^- \rightarrow \text{Fe}(s) \quad E^\circ = -0.447 \, \text{V} \quad \text{(Reaction 1)} \] 2. The second half-reaction is: \[ \text{Fe}^{2+} \rightarrow \text{Fe}^{3+} + e^- \quad E^\circ = -0.771 \, \text{V} \quad \text{(Reaction 2)} \] ### Step 2: Reverse the second half-reaction To use the second half-reaction in the desired form, we need to reverse it: \[ \text{Fe}^{3+} + e^- \rightarrow \text{Fe}^{2+} \quad E^\circ = +0.771 \, \text{V} \] ### Step 3: Combine the half-reactions Now we will combine the two half-reactions. We need to multiply the reversed second reaction by 2 so that we can cancel out \( \text{Fe}^{2+} \): 1. From the reversed second reaction: \[ 2(\text{Fe}^{3+} + e^- \rightarrow \text{Fe}^{2+}) \quad E^\circ = +0.771 \, \text{V} \] becomes: \[ 2\text{Fe}^{3+} + 2e^- \rightarrow 2\text{Fe}^{2+} \quad E^\circ = +0.771 \, \text{V} \] 2. Now, we add this to the first reaction: \[ \text{Fe}^{2+} + 2e^- \rightarrow \text{Fe}(s) \quad E^\circ = -0.447 \, \text{V} \] ### Step 4: Write the overall reaction Adding these two reactions gives: \[ 2\text{Fe}^{3+} + 2e^- + \text{Fe}^{2+} + 2e^- \rightarrow 2\text{Fe}^{2+} + \text{Fe}(s) \] This simplifies to: \[ \text{Fe}^{3+} + 3e^- \rightarrow \text{Fe}(s) \] ### Step 5: Calculate the overall standard electrode potential Now we can calculate the overall standard electrode potential \( E^\circ \): \[ E^\circ_{\text{overall}} = E^\circ_{\text{reduced}} + E^\circ_{\text{oxidized}} = +0.771 \, \text{V} - 0.447 \, \text{V} \] Calculating this gives: \[ E^\circ_{\text{overall}} = 0.771 - 0.447 = 0.324 \, \text{V} \] ### Step 6: Final answer The standard electrode potential for the reaction \( \text{Fe}^{3+} + 3e^- \rightarrow \text{Fe}(s) \) is approximately: \[ E^\circ \approx 0.34 \, \text{V} \]

To find the standard electrode potential \( E^\circ \) for the reaction \( \text{Fe}^{3+} + 3e^- \rightarrow \text{Fe}(s) \), we can use the given half-reactions and their standard electrode potentials. Here’s a step-by-step solution: ### Step 1: Write the given half-reactions and their potentials 1. The first half-reaction is: \[ \text{Fe}^{2+} + 2e^- \rightarrow \text{Fe}(s) \quad E^\circ = -0.447 \, \text{V} \quad \text{(Reaction 1)} \] ...
Promotional Banner

Topper's Solved these Questions

  • CHEMISTRY AT A GLANCE

    ALLEN|Exercise INORGANIC CHEMISTRY|300 Videos
  • CHEMISTRY AT A GLANCE

    ALLEN|Exercise ORGANIC CHEMISTRY|472 Videos
  • Chemical Equilibrium

    ALLEN|Exercise All Questions|30 Videos
  • ELECTROCHEMISTRY

    ALLEN|Exercise EXERCISE -05 [B]|38 Videos

Similar Questions

Explore conceptually related problems

If the half cel reactions are given as (i) Fe^(2+)(Aq)+2e^(-)rarr Fe(s),E^(@)=-0.44 V (ii) 2H^(+)(sq)+1/2 O_(2)(g)+2e^(-)rarrH_(2)O(l) E^(@)=+1.23 V The E^(@) for the reaction Fe(s)+2H^(+)+1/2O_(2)(g)rarrFe^(2+)(aq)+H_(2)O(l) will be

(i) On the basis of the standard electrode potential values stated for acid solutions, predict whether Ti^(4+) species may be used to oxidise Fe(II) to Fe(III) {:(Ti^(4+) + e^(-) to Ti^(3+), E^(@) = +0.01V), (Fe^(3+) + e^(-) to Fe^(2+), E^(@)= +0.77V):} (ii) Based on the data arrange Fe^(3+), Mn^(2+) " and " Cr^(2+) in the increasing order of stability of +2 oxidation state. (Give a brief reason) E_(Cr^(3+)//Cr^(2+))^(@) = -0.4V E_(Mn^(3+)//Mn^(2+))^(@) = +1.5V E_(Fe^(3+)//Fe^(2+))^(@) = +0.8V

Given electrode potentials asre Fe^(3+)+e^(-) rarr Fe^(2+)," "E^(c-)=0.771V I_(2)+2e^(-) rarr 2I^(c-)," "E^(c-)=0.536V E^(c-)._(cell) for the cell reaction, Fe^(3+)+2I^(c-) rarr Fe^(2+)+I_(2) is

Given electrode potentials: Fe^(3+) + e^(-) rarr Fe^(2+) : E^(o) =0.771 V and I_(2) 2e^(-) rarr 2I^(-), E^(o) = 0.556 V then E^(o) for the cell reaction 2 Fe^(3+) 2I ^(-) rarr 2 Fe^(2+) + l_(2) will be:

The standard oxidation potentials, , for the half reactions are as follows : Zn rightarrow Zn^(2+) + 2e^(-) , E^(@) = +0.76V Fe rightarrow Fe^(2+)+ 2e^(-), E^(@) = + 0.41 V The EMF for the cell reaction, Fe^(2+) + Zn rightarrow Zn^(2+) + Fe

If E_(Fe^(2+))^(@)//Fe = -0.441 V and E_(Fe^(3+))^(@)//Fe^(2+) = 0.771 V The standard EMF of the reaction Fe+2Fe^(3+) rarr 3Fe^(2+) will be:

Given that E_(Fe^(2+)//Fe)^(.)=-0.44V,E_(Fe^(3+)//Fe^(2+))^(@)=0.77V if Fe^(2+),Fe^(3+) and Fe solid are kept together then

Given standard E^(c-): Fe^(3+)+3e^(-)rarrFe," "E^(c-)=-0.036 Fe^(2+)+2e^(-)rarr Fe," "E^(c-)=-0.440V The E^(c-) of Fe^(3+)+e^(-) rarr Fe^(2+) is

Given, standard electrode potentials, {:(Fe^(3+)+3e^(-) rarr Fe,,,E^(@) = -0.036 " volt"),(Fe^(2+)+2e^(-)rarr Fe,,,E^(@) = - 0.440 " volt"):} The standard electrode potential E^(@) for Fe^(3+) + e^(-) rarr Fe^(2+) is :

Reduction potential for the following half-cell reaction are Zn rarr Zn^(2+)+2e^(-),E_(Zn^(2+)//Zn)^(@) = -0.76V Fe rarr Fe^(2+)+2e^(-),E_(Fe^(2+)//Fe)^(@) = -0.44V The emf for the cell reaction Fe^(2+) + Zn rarr Zn^(2+)+Fe will be