Home
Class 12
PHYSICS
In y = Asinomegat + Asin(omegat + (2pi)/...

In `y = Asinomegat + Asin(omegat + (2pi)/(3))`
`|{:(,"Column-I",,"Column-II"),((A),"Motion",(p),"is periodic but no SHM"),((B),"Amplitude",(q),"is SHM"),((C),"Initial phase",(r),A),((D),"Maximum velocity",(s),pi//3),(,,(t),omegaA//2),(,,(u),"None"):}|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation of motion and determine the corresponding values for each item in Column I based on the information provided in Column II. ### Step-by-Step Solution: 1. **Given Equation**: The equation provided is: \[ y = A \sin(\omega t) + A \sin\left(\omega t + \frac{2\pi}{3}\right) \] 2. **Combine the Sine Terms**: We can factor out \(A\) from the equation: \[ y = A \left( \sin(\omega t) + \sin\left(\omega t + \frac{2\pi}{3}\right) \right) \] Using the sine addition formula, we can simplify this further. 3. **Using Trigonometric Identities**: We apply the identity: \[ \sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] Here, let \(A = \omega t\) and \(B = \omega t + \frac{2\pi}{3}\): \[ y = A \cdot 2 \sin\left(\omega t + \frac{\pi}{3}\right) \cos\left(\frac{\frac{2\pi}{3}}{2}\right) \] Since \(\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}\), we have: \[ y = A \cdot 2 \cdot \frac{1}{2} \sin\left(\omega t + \frac{\pi}{3}\right) = A \sin\left(\omega t + \frac{\pi}{3}\right) \] 4. **Identify the Motion**: The equation \(y = A \sin(\omega t + \phi)\) is in the standard form of simple harmonic motion (SHM). Thus: - **Motion**: It is periodic and represents SHM. - Corresponding option: **A corresponds to q** (Motion is periodic but no SHM). 5. **Determine Amplitude**: From the equation \(y = A \sin(\omega t + \frac{\pi}{3})\), the amplitude \(A\) is clearly: - **Amplitude**: \(A\) - Corresponding option: **B corresponds to r** (Amplitude is SHM). 6. **Determine Initial Phase**: The initial phase \(\phi\) in the equation is \(\frac{\pi}{3}\): - **Initial Phase**: \(\frac{\pi}{3}\) - Corresponding option: **C corresponds to s** (Initial phase is \(\frac{\pi}{3}\)). 7. **Calculate Maximum Velocity**: The maximum velocity \(V_{\text{max}}\) for SHM is given by: \[ V_{\text{max}} = A \omega \] Since this does not match any of the options provided, we conclude: - **Maximum Velocity**: \(A \omega\) - Corresponding option: **D corresponds to u** (None). ### Final Correspondences: - A corresponds to q - B corresponds to r - C corresponds to s - D corresponds to u

To solve the problem, we need to analyze the given equation of motion and determine the corresponding values for each item in Column I based on the information provided in Column II. ### Step-by-Step Solution: 1. **Given Equation**: The equation provided is: \[ y = A \sin(\omega t) + A \sin\left(\omega t + \frac{2\pi}{3}\right) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SIMPLE HARMONIC MOTION

    ALLEN|Exercise Asseration & Reason|7 Videos
  • SIMPLE HARMONIC MOTION

    ALLEN|Exercise Comprehension Base Questions (1)|2 Videos
  • SIMPLE HARMONIC MOTION

    ALLEN|Exercise Exercise- 3 Match The Column|1 Videos
  • RACE

    ALLEN|Exercise Basic Maths (Wave Motion & Dopplers Effect) (Stationary waves & doppler effect, beats)|24 Videos
  • TEST PAPER

    ALLEN|Exercise PHYSICS|4 Videos

Similar Questions

Explore conceptually related problems

Match the following {:(,"Column-I",,"Column-II"),((A),"Even number",(p),(22)/(7)),((B),"Rational number",(q),pi),((C),"Irrational number",(r),0),((D),"Real number",(s),sqrt(2)),(,,(t),1.bar(234)):}

{:(,"Column I",,"Column II"),((A),"Dimensional variable",(p),pi),((B),"Dimensionless variable",(q),"Force"),((C),"Dimensional constant",(r),"Angle"),((D),"Dimensionless constant",(s),"Gravitational constant"):}

Match Column I with Column II and select the correct option . {:(,"Column I",,"Column II"),((A),AIDS,(p),"Yersinia pestis"),((B),"Syphilis ",(q),"Hepatitis virus"),((C),"Viral jaundice",(r),HIV),((D),"Gonorrhea",(s),"Treponema"),(,,(t),"Neisseria"):}

{:(,"Column I",,"Column II"),(("A"),"Work",(p),["A"^(1//2)"T"^(-1)]),(("B"),"Moment of inertia",(q),["FA"^(1//2)]),(("C"),"Velocity",(r),["FA"^(1//2)"T"^(2)]):}

In the s-t equation (s=10+20 t-5t^(2)) match the following columns. |{:(,"Column I",,"Column II"),((A),"Distancec travelled in 3s",(p),-20" units"),((B),"Displacement 1 s",(q),15" units"),((C ),"Initial acceleration",(r ),25" units"),((D),"Velocity at 4 s",(s),-10" units"):}|

{:(,"Column I",,"Column II"),(("A"),R//L,(p),"Time"),(("B"),C//R,(q),"Frequency"),(("C"),E//B,(r),"Speed"),(("D"),sqrt(epsilon_(0)mu_(0)),(s),"None"):}

Match the following : {:(,"Column-I",,"Column-II"),((A),3s^(1),(p),n=3),((B), 3p^(1),(q), l=0),((C ), 4s^(1),(r ) , l=1),((D),4d^(1),(s),m=0),(,,(t),m=+-1):}

Match the column I with column II {:("Column-I","Column-II"),((A)"Fructose",(p)"Protein"),((B)"Zwitterion",(q)"Inversion"),((C )"Peptide linkage",(r)alpha-"Amino acid"),((D)"Hydrlysis of cane sugar",(s)"Carbohydroate"),(,(t)"Ketose"):}

Match the following columns. |{:(,"Column I",,"Column II"),((A),"d v/dt",(p),"Acceleration"),((B),"d|v|/dt",(q),"Magnitude of acceleration"),((C ),(dr)/(dt),(r ),"Velocity"),((D),|(dr)/(dt)|,(s),"Magnitude of velocity"),(,,(t),"Rate of change of speed"):}|

Match the column I with column II {:("Column-I","Column-II"),((A)"Starch",(p)"Natural polymer"),((B)"Nylon-6",(q)"Synthetic polymer"),((C )"Peptide Bond",(r)"Amide linkage"),((D)"Maltose",(s)"Glycoside linkage"),(,(t)"Oligosaccharide"):}