Home
Class 12
CHEMISTRY
50 gm of CaCO(3) is allowed to react wit...

50 gm of `CaCO_(3)` is allowed to react with 68.6 gm of `H_(2)PO_(4)` then select the correct option(s)-
`3CaCO_(3)+ 2H_(3)PO_(4) to Ca_(3)(PO_(4))_(2) + 3H_(2)O + 3CO_(2)`

A

51.67 gm salt is formed

B

Amount of unreacted reagent =35.93 gm

C

`n_(CO_(2))`=0.5 moles

D

0.7 moles `CO_(2)` is evolved

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Write the balanced chemical equation. The balanced chemical equation for the reaction is: \[ 3 \text{CaCO}_3 + 2 \text{H}_3\text{PO}_4 \rightarrow \text{Ca}_3(\text{PO}_4)_2 + 3 \text{H}_2\text{O} + 3 \text{CO}_2 \] ### Step 2: Calculate the moles of \( \text{CaCO}_3 \). Given mass of \( \text{CaCO}_3 = 50 \, \text{g} \) and its molar mass is \( 100 \, \text{g/mol} \): \[ \text{Moles of } \text{CaCO}_3 = \frac{\text{mass}}{\text{molar mass}} = \frac{50 \, \text{g}}{100 \, \text{g/mol}} = 0.5 \, \text{mol} \] ### Step 3: Calculate the moles of \( \text{H}_3\text{PO}_4 \). Given mass of \( \text{H}_3\text{PO}_4 = 68.6 \, \text{g} \) and its molar mass is \( 98 \, \text{g/mol} \): \[ \text{Moles of } \text{H}_3\text{PO}_4 = \frac{68.6 \, \text{g}}{98 \, \text{g/mol}} \approx 0.7 \, \text{mol} \] ### Step 4: Determine the limiting reagent. From the balanced equation, \( 3 \) moles of \( \text{CaCO}_3 \) react with \( 2 \) moles of \( \text{H}_3\text{PO}_4 \). Therefore, \( 1 \) mole of \( \text{CaCO}_3 \) requires \( \frac{2}{3} \) moles of \( \text{H}_3\text{PO}_4 \). For \( 0.5 \) moles of \( \text{CaCO}_3 \): \[ \text{Moles of } \text{H}_3\text{PO}_4 \text{ required} = 0.5 \times \frac{2}{3} = 0.333 \, \text{mol} \] Since we have \( 0.7 \, \text{mol} \) of \( \text{H}_3\text{PO}_4 \) available, \( \text{CaCO}_3 \) is the limiting reagent. ### Step 5: Calculate the moles of product formed. From the balanced equation, \( 3 \) moles of \( \text{CaCO}_3 \) produce \( 1 \) mole of \( \text{Ca}_3(\text{PO}_4)_2 \). Thus, \( 0.5 \) moles of \( \text{CaCO}_3 \) will produce: \[ \text{Moles of } \text{Ca}_3(\text{PO}_4)_2 = \frac{0.5}{3} \approx 0.167 \, \text{mol} \] ### Step 6: Calculate the mass of \( \text{Ca}_3(\text{PO}_4)_2 \) produced. The molar mass of \( \text{Ca}_3(\text{PO}_4)_2 \) is \( 310 \, \text{g/mol} \): \[ \text{Mass of } \text{Ca}_3(\text{PO}_4)_2 = 0.167 \, \text{mol} \times 310 \, \text{g/mol} \approx 51.67 \, \text{g} \] ### Step 7: Calculate the moles of \( \text{CO}_2 \) produced. From the balanced equation, \( 3 \) moles of \( \text{CaCO}_3 \) produce \( 3 \) moles of \( \text{CO}_2 \). Thus, \( 0.5 \) moles of \( \text{CaCO}_3 \) will produce: \[ \text{Moles of } \text{CO}_2 = 0.5 \, \text{mol} \] ### Step 8: Calculate the remaining moles of \( \text{H}_3\text{PO}_4 \). Total moles of \( \text{H}_3\text{PO}_4 \) = \( 0.7 \, \text{mol} \) Moles used = \( 0.333 \, \text{mol} \) Remaining moles = \( 0.7 - 0.333 = 0.367 \, \text{mol} \) ### Step 9: Calculate the mass of unreacted \( \text{H}_3\text{PO}_4 \). \[ \text{Mass of unreacted } \text{H}_3\text{PO}_4 = 0.367 \, \text{mol} \times 98 \, \text{g/mol} \approx 35.96 \, \text{g} \] ### Summary of Results: - Mass of \( \text{Ca}_3(\text{PO}_4)_2 \) produced: \( 51.67 \, \text{g} \) - Moles of \( \text{CO}_2 \) produced: \( 0.5 \, \text{mol} \) - Mass of unreacted \( \text{H}_3\text{PO}_4 \): \( 35.96 \, \text{g} \) ### Correct Options: - A: Mass of \( \text{Ca}_3(\text{PO}_4)_2 \) produced is correct. - B: Mass of unreacted \( \text{H}_3\text{PO}_4 \) is correct. - C: Moles of \( \text{CO}_2 \) produced is correct.
Promotional Banner

Topper's Solved these Questions

  • MOLE CONCEPT

    ALLEN|Exercise O-II (Match the column:)|3 Videos
  • MOLE CONCEPT

    ALLEN|Exercise J-MAINS|16 Videos
  • MOLE CONCEPT

    ALLEN|Exercise O-II (Assertion Reason:)|2 Videos
  • METALLURGY

    ALLEN|Exercise EXERCISE-05 [B]|26 Videos
  • p-Block Element

    ALLEN|Exercise All Questions|20 Videos

Similar Questions

Explore conceptually related problems

H_(3)PO_(2)+CuSO_(4) to Cu darr+H_(3)PO_(4)+HNO_(3)

H_(3)underline(P)O_(5)+H_(2)O to H_(3)PO_(4)+H_(2)O_(2)

H_(3)underline(P)O_(5)+H_(2)O to H_(3)PO_(4)+H_(2)O_(2)

Find out the equivalent weight of H_(3) PO_(4) in the reaction: Ca(OH)_(2) + H_(3) PO_(4) rarr CaHPO_(4) + 2 H_(2) O

Find the equivalent mass of H_3PO_4 in the following reaction : Ca(OH)_(2) + H_(3)PO_(4) to CaHPO_(4) + 2H_(2)O

50 g of CaCO_(3) is allowed to react with 70 g of H_(3)PO_(4^(.) Calculate : (i) amount of Ca_(3)(PO_(4))_(2) formed (ii) amount of unreacted reagent

What percentage of oxygen is present in the compound CaCO_(3).3Ca_(3)(PO_(4))_(2) ?

What percentage of oxygen is present in the compound CaCO_(3).3Ca_(3)(PO_(4))_(2) ?

For H_(3)PO_(3) and H_(3)PO_(4) the correct choice is

Ca_(3)(PO_(4))_(2) is :