Home
Class 12
MATHS
If t = (1)/(1-root4(2)) then t equals...

If `t = (1)/(1-root4(2))` then t equals

A

`(1-root4(2))(2-sqrt(2))`

B

`(1-root4(2))(1+sqrt(2))`

C

`(1+root4(2))(1-sqrt(2))`

D

`-(1+root4(2))(1+sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( t = \frac{1}{1 - \sqrt[4]{2}} \), we will go through the following steps: ### Step 1: Rewrite the Expression We start with the expression for \( t \): \[ t = \frac{1}{1 - \sqrt[4]{2}} \] Here, \( \sqrt[4]{2} \) can be expressed as \( 2^{1/4} \). ### Step 2: Rationalize the Denominator To simplify the expression, we can rationalize the denominator. We do this by multiplying the numerator and the denominator by the conjugate of the denominator, which is \( 1 + \sqrt[4]{2} \): \[ t = \frac{1 \cdot (1 + \sqrt[4]{2})}{(1 - \sqrt[4]{2})(1 + \sqrt[4]{2})} \] ### Step 3: Apply the Difference of Squares Formula Using the difference of squares formula \( (a - b)(a + b) = a^2 - b^2 \), we can simplify the denominator: \[ t = \frac{1 + \sqrt[4]{2}}{1^2 - (\sqrt[4]{2})^2} \] Calculating \( (\sqrt[4]{2})^2 \) gives us \( \sqrt{2} \): \[ t = \frac{1 + \sqrt[4]{2}}{1 - \sqrt{2}} \] ### Step 4: Rationalize Again Next, we need to rationalize the new denominator \( 1 - \sqrt{2} \). We multiply the numerator and denominator by the conjugate \( 1 + \sqrt{2} \): \[ t = \frac{(1 + \sqrt[4]{2})(1 + \sqrt{2})}{(1 - \sqrt{2})(1 + \sqrt{2})} \] ### Step 5: Simplify the Denominator Again applying the difference of squares: \[ t = \frac{(1 + \sqrt[4]{2})(1 + \sqrt{2})}{1^2 - (\sqrt{2})^2} \] Calculating \( (\sqrt{2})^2 \) gives us \( 2 \): \[ t = \frac{(1 + \sqrt[4]{2})(1 + \sqrt{2})}{1 - 2} \] This simplifies to: \[ t = \frac{(1 + \sqrt[4]{2})(1 + \sqrt{2})}{-1} \] Thus: \[ t = -(1 + \sqrt[4]{2})(1 + \sqrt{2}) \] ### Final Expression The final expression for \( t \) is: \[ t = -(1 + \sqrt[4]{2})(1 + \sqrt{2}) \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Sigma_(r=1)^(infty) tan^(-1)(1)/(2r^(2))=t then tan t is equal to

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If A=[(0,-1,2),(1,0,3),(-2,-3,0)], then A+2A^t equals (A) A (B) -A^t (C) A^t (D) 2A^2

If x = t + (1)/(t) "and " y = t - (1)/(t) . "then" (dy)/(dx) is equal to

If int_(1)^(x) (dt)/(|t|sqrt(t^(2)-t)) = (pi)/(6) , then x can be equal to :

root(5)(16)xxroot(5)(2) is equal t :-

The coefficient of t^50 in (1+t)^41 (1-t+t^2)^40 is equal to

The value of Lim_(x rarr0)((2)/((tan x-cos x-x+1))int_(0)^(x)(root(3)(1+sin^(2)t)-root(4)(1-2tan t))dt is equal to :

If F(x) =(1)/(x^(2))overset(x)underset(4)int [4t^(2)-2F'(t)]dt then F'(4) equals

If y(t) satisfies the differential equation y'(t)+2y(t)=2e^(-2t),y(0)=2 then y(1) equals