Home
Class 12
MATHS
For all positive numbers x,y,z the produ...

For all positive numbers x,y,z the product `((1)/(x+y+z))((1)/(x)+(1)/(y)+(1)/(z))((1)/(xy+yz+zx))((1)/(xy)+(1)/(yz)+(1)/(zx))` equals

A

`x^(-2)y^(-2)z^(-2)`

B

`x^(-2)+y^(-2)+z^(-2)`

C

`(x+y+z)^(-2)`

D

`(1)/(xyz)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \left(\frac{1}{x+y+z}\right) \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) \left(\frac{1}{xy+yz+zx}\right) \left(\frac{1}{xy} + \frac{1}{yz} + \frac{1}{zx}\right) \] Let's break this down step by step. ### Step 1: Rewrite the second term The second term can be rewritten using a common denominator. The common denominator for \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\) is \(xyz\): \[ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{yz + xz + xy}{xyz} \] ### Step 2: Rewrite the fourth term Similarly, the fourth term can also be rewritten using a common denominator, which is again \(xyz\): \[ \frac{1}{xy} + \frac{1}{yz} + \frac{1}{zx} = \frac{z + x + y}{xyz} \] ### Step 3: Substitute back into the expression Now substituting these back into the original expression, we have: \[ \left(\frac{1}{x+y+z}\right) \left(\frac{yz + xz + xy}{xyz}\right) \left(\frac{1}{xy + yz + zx}\right) \left(\frac{z + x + y}{xyz}\right) \] ### Step 4: Combine the fractions Now we can combine the fractions: \[ = \frac{(yz + xz + xy)(z + x + y)}{(x+y+z)(xy + yz + zx)(xyz^2)} \] ### Step 5: Simplify the expression Notice that \(yz + xz + xy\) is the same as \(xy + xz + yz\), so we can simplify: \[ = \frac{(yz + xz + xy)(z + x + y)}{(x+y+z)(xy + yz + zx)(xyz^2)} \] ### Step 6: Cancel terms The numerator and denominator can be simplified further. The term \(x+y+z\) in the denominator will cancel with the corresponding term in the numerator. Thus, we have: \[ = \frac{1}{xyz} \] ### Step 7: Final expression Finally, we can express this as: \[ = \frac{1}{x^2y^2z^2} \] This can be rewritten using negative exponents: \[ = x^{-2}y^{-2}z^{-2} \] ### Conclusion Thus, the final answer is: \[ \boxed{x^{-2}y^{-2}z^{-2}} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Find all positive real numbers x, y, z such that: 2x-2y + 1/z = 1/(2014), 2y-2z + 1/x = 1/(2014), 2z-2x + 1/y = 1/(2014)

If (1)/(x) , (1)/(y) , (1)/(z) are A.P. show that (y+z)/(x) , (z+x)/(y) , (x+y)/(z) are in A.P.

If x , y , z are all different real numbers, then 1/((x-y)^2)+1/((y-z)^2)+1/((z-x)^2)=(1/(x-y)+1/(y-z)+1/(z-x))^2

If x ,y ,z are all different real numbers, then 1/((x-y)^2)+1/((y-z)^2)+1/((z-x)^2)=(1/(x-y)+1/(y-z)+1/(z-x))^2

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(z y-z)+cot^(-1)(z x+1)/(z-x)

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(y-z)+cot^(-1)(z x+1)/(z-x)

Show that: ((a^(x+1))/(a^(y+1)))^(x+y)\ ((a^(y+2))/(a^(z+2)))^(y+z)\ ((a^(z+3))/(a^(x+3)))^(z+x)=1

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi , then 1/(xy)+1/(yz)+1/(zx)=

If x , y ,z are positive real numbers show that: sqrt(x^(-1)y)dotsqrt(y^(-1)z)dotsqrt(z^(-1)x)=1

If x , y ,z are positive real numbers show that: sqrt(x^(-1)y)dotsqrt(y^(-1)z)dotsqrt(z^(-1)x)=1