Home
Class 12
MATHS
Let T = (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqr...

Let `T = (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7)) +(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)+2)` then-

A

`T lt 1`

B

`T = 1`

C

`1 lt T lt 2`

D

`T lt 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ T = \frac{1}{3 - \sqrt{8}} - \frac{1}{\sqrt{8} - \sqrt{7}} + \frac{1}{\sqrt{7} - \sqrt{6}} - \frac{1}{\sqrt{6} - \sqrt{5}} + \frac{1}{\sqrt{5} + 2} \] we will rationalize each term in the expression step by step. ### Step 1: Rationalize the first term \(\frac{1}{3 - \sqrt{8}}\) Multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{1}{3 - \sqrt{8}} \cdot \frac{3 + \sqrt{8}}{3 + \sqrt{8}} = \frac{3 + \sqrt{8}}{(3 - \sqrt{8})(3 + \sqrt{8})} = \frac{3 + \sqrt{8}}{9 - 8} = 3 + \sqrt{8} \] ### Step 2: Rationalize the second term \(-\frac{1}{\sqrt{8} - \sqrt{7}}\) Multiply the numerator and denominator by the conjugate of the denominator: \[ -\frac{1}{\sqrt{8} - \sqrt{7}} \cdot \frac{\sqrt{8} + \sqrt{7}}{\sqrt{8} + \sqrt{7}} = -\frac{\sqrt{8} + \sqrt{7}}{(\sqrt{8} - \sqrt{7})(\sqrt{8} + \sqrt{7})} = -\frac{\sqrt{8} + \sqrt{7}}{8 - 7} = -(\sqrt{8} + \sqrt{7}) \] ### Step 3: Rationalize the third term \(\frac{1}{\sqrt{7} - \sqrt{6}}\) Multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{1}{\sqrt{7} - \sqrt{6}} \cdot \frac{\sqrt{7} + \sqrt{6}}{\sqrt{7} + \sqrt{6}} = \frac{\sqrt{7} + \sqrt{6}}{(\sqrt{7} - \sqrt{6})(\sqrt{7} + \sqrt{6})} = \frac{\sqrt{7} + \sqrt{6}}{7 - 6} = \sqrt{7} + \sqrt{6} \] ### Step 4: Rationalize the fourth term \(-\frac{1}{\sqrt{6} - \sqrt{5}}\) Multiply the numerator and denominator by the conjugate of the denominator: \[ -\frac{1}{\sqrt{6} - \sqrt{5}} \cdot \frac{\sqrt{6} + \sqrt{5}}{\sqrt{6} + \sqrt{5}} = -\frac{\sqrt{6} + \sqrt{5}}{(\sqrt{6} - \sqrt{5})(\sqrt{6} + \sqrt{5})} = -\frac{\sqrt{6} + \sqrt{5}}{6 - 5} = -(\sqrt{6} + \sqrt{5}) \] ### Step 5: Rationalize the fifth term \(\frac{1}{\sqrt{5} + 2}\) Multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{1}{\sqrt{5} + 2} \cdot \frac{\sqrt{5} - 2}{\sqrt{5} - 2} = \frac{\sqrt{5} - 2}{(\sqrt{5} + 2)(\sqrt{5} - 2)} = \frac{\sqrt{5} - 2}{5 - 4} = \sqrt{5} - 2 \] ### Step 6: Combine all the terms Now substituting back into \(T\): \[ T = (3 + \sqrt{8}) - (\sqrt{8} + \sqrt{7}) + (\sqrt{7} + \sqrt{6}) - (\sqrt{6} + \sqrt{5}) + (\sqrt{5} - 2) \] ### Step 7: Simplify the expression Combining like terms: - The \(\sqrt{8}\) cancels: \(\sqrt{8} - \sqrt{8} = 0\) - The \(\sqrt{7}\) cancels: \(-\sqrt{7} + \sqrt{7} = 0\) - The \(\sqrt{6}\) cancels: \(-\sqrt{6} + \sqrt{6} = 0\) - The \(\sqrt{5}\) cancels: \(-\sqrt{5} + \sqrt{5} = 0\) Thus, we are left with: \[ T = 3 - 2 = 1 \] ### Final Result The value of \(T\) is \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Evaluate : (1)/(3-sqrt(8)) -(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2).

Show that : (1)/(3-2sqrt(2))- (1)/(2sqrt(2)-sqrt(7)) + (1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5 .

Show that: 1/(3-sqrt(8))-1/(sqrt(8)-sqrt(7))+1/(sqrt(7)-sqrt(6))-1/(sqrt(6)-sqrt(5))+1/(sqrt(5)-2)=5

Prove that: 1/(3-sqrt(8))-1/(sqrt(8)-\ sqrt(7))+1/(sqrt(7)-\ sqrt(6))-1/(sqrt(6)-\ sqrt(5))+1/(sqrt(5)-2)=5

1/(sqrt(7)+sqrt(3))\times (sqrt(7)-sqrt(3))/(sqrt(7)-sqrt(3))

(1)/(2sqrt(5)-sqrt(3))-(2sqrt(5)+sqrt(3))/(2sqrt(5)+sqrt(3)) =

Simplify : (1)/(sqrt(3)+sqrt(2))-(1)/(sqrt(3)-sqrt(2))+(2)/(sqrt(2)+1)

(sqrt(6+2sqrt(5)))(sqrt(6-2sqrt(5)))

Prove that (1)/(sqrt(7))=(1)/(sqrt(7))times(sqrt(7))/(sqrt(7))

(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))-(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))+(1)/(sqrt(2)+1)-(1)/(sqrt(2)-1)