Home
Class 12
MATHS
If x = sqrt(7)+(1)/(sqrt(7)), then the v...

If `x = sqrt(7)+(1)/(sqrt(7))`, then the value of `(128)^(x^(2))` is-

A

`2^(40)`

B

`2^(64)`

C

`2^(56)`

D

`2^(24)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( (128)^{x^2} \) where \( x = \sqrt{7} + \frac{1}{\sqrt{7}} \). ### Step 1: Calculate \( x^2 \) We start by squaring \( x \): \[ x^2 = \left( \sqrt{7} + \frac{1}{\sqrt{7}} \right)^2 \] Using the identity \( (a + b)^2 = a^2 + 2ab + b^2 \), we can expand this: \[ x^2 = \left( \sqrt{7} \right)^2 + 2 \left( \sqrt{7} \cdot \frac{1}{\sqrt{7}} \right) + \left( \frac{1}{\sqrt{7}} \right)^2 \] Calculating each term: - \( \left( \sqrt{7} \right)^2 = 7 \) - \( 2 \left( \sqrt{7} \cdot \frac{1}{\sqrt{7}} \right) = 2 \) - \( \left( \frac{1}{\sqrt{7}} \right)^2 = \frac{1}{7} \) Putting it all together: \[ x^2 = 7 + 2 + \frac{1}{7} = 9 + \frac{1}{7} \] To combine these, we convert 9 into a fraction: \[ 9 = \frac{63}{7} \] Thus: \[ x^2 = \frac{63}{7} + \frac{1}{7} = \frac{64}{7} \] ### Step 2: Substitute \( x^2 \) into \( (128)^{x^2} \) Now we need to find \( (128)^{x^2} \): \[ (128)^{x^2} = (128)^{\frac{64}{7}} \] We can express 128 as a power of 2: \[ 128 = 2^7 \] So we can rewrite the expression: \[ (128)^{\frac{64}{7}} = (2^7)^{\frac{64}{7}} \] Using the power of a power property \( (a^m)^n = a^{m \cdot n} \): \[ (2^7)^{\frac{64}{7}} = 2^{7 \cdot \frac{64}{7}} = 2^{64} \] ### Final Answer Thus, the value of \( (128)^{x^2} \) is: \[ \boxed{2^{64}} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If x = sqrt(3)- sqrt(2) find the value of x+(1)/(x)

If a = sqrt((7+4sqrt3)/(7-4sqrt3)) then the value of [a(a-14)]^2 is

If x=(7+5sqrt(2))^(1/3) -1/((7+5sqrt(2))^(1/3) , then the value of x^3+3x-14 is equal to 1 (b) 0 (c) 2 (d) 4

If x=(7+5sqrt(2))^(1/3)-1/((7+5sqrt(2))^(1/3)) , then the value of x^3+3x-14 is equal to 1 b. 0 c. 2 d. 4

If x=1/(2-sqrt(3)), find the value of x^3-2x^2-7x+5

If x=1/(2-sqrt(3)), find the value of x^3-2x^2-7x+5

If x=1/(2-sqrt(3)), find the value of x^3-2x^2-7x+5

If x=sqrt(3) find the value of 2x^2-8x+7.

If 2x= 3+ sqrt7 , find the value of : 4x^(2) +(1)/(x^(2))

If sqrt(x+3)+sqrt(7-x)=4 , what is the positive value of x^(3) ?