Home
Class 12
MATHS
l n ((3)/(sqrt(3)))- ln (2+sqrt(3)) equa...

`l n ((3)/(sqrt(3)))- ln (2+sqrt(3))` equals (where `l nx = log_(e)x)`

A

`l n sqrt(3) +ln(2-sqrt(3))`

B

`ln 3- ln (2-sqrt(3))`

C

`ln 3 - ln (2-sqrt(3))`

D

`ln sqrt(3)+ln (2+sqrt(3))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

log_(3sqrt(2))324

Solve : 3^((log_9 x))xx2 = 3sqrt(3)

If log_(sqrt(2)) sqrt(x) +log_(2)(x) + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

If S={x:sqrt(log_xsqrt(3x)) , where log_3xgt-1} , then

Which is/are true ? (A) log_(0.2)3lt log_(2)3 (B) log_(sqrt(5))10ltlog _(sqrt(3))11 (C) log_(sqrt(3))10gtlog _(sqrt(5))11 (D) log _((2-sqrt3))(7-4sqrt(3))gtlog_((sqrt(3)-1))(4-2sqrt(3))

The value of e^("log"_(e) x+ "log"_(sqrt(e)) x+ "log"_(root(3)(e)) x + …. + "log"_(root(10)(e))x), is

If alpha, beta ar the roots of the quadratic equation x ^(2) -(3+ 2 ^(sqrt(log _(2)3))-3 ^(sqrt(log _(3)2)))x-2 (3 ^(log _(3)2)-2^(log _(z)3))=0, then the value of alpha ^(2) + alpha beta +beta^2 is equal to :

If alpha, beta ar the roots of the quadratic equation x ^(2) -(3+ 2 ^(sqrt(log _(2)3))-3 ^(sqrt(log _(3)2)))x-2 (3 ^(log _(3)2)-2^(log _(z)3))=0, then the value of alpha ^(2) + alpha beta is equal to :

Find the value of the following: (i) log_(10) 2 + log_(10) 5 (ii) log_(3) (sqrt(11)-sqrt2) + log_(3) (sqrt11+sqrt2) (iii) log_(7) 35 - log_(7) 5

If y=log((x^2+x+1)/(x^2-x+1))+2/(sqrt(3))t a n^(-1)((sqrt(3)x)/(1-x^2)),"f i n d"(dy)/(dx)