Home
Class 12
MATHS
If log(x)log(18) (sqrt(2)+sqrt(8)) = (-1...

If `log_(x)log_(18) (sqrt(2)+sqrt(8)) = (-1)/(2)`. Then the value of 'x'.

A

is a perfect square

B

is a composite number

C

relatively prime with 25

D

is a prime number

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{x} \left( \log_{18} \left( \sqrt{2} + \sqrt{8} \right) \right) = -\frac{1}{2} \), we will follow these steps: ### Step 1: Simplify the expression inside the logarithm First, we simplify \( \sqrt{2} + \sqrt{8} \): \[ \sqrt{8} = \sqrt{4 \cdot 2} = 2\sqrt{2} \] Thus, \[ \sqrt{2} + \sqrt{8} = \sqrt{2} + 2\sqrt{2} = 3\sqrt{2} \] ### Step 2: Rewrite the equation Now we can rewrite the original equation as: \[ \log_{x} \left( \log_{18} (3\sqrt{2}) \right) = -\frac{1}{2} \] ### Step 3: Use properties of logarithms Using the property of logarithms, we can express the equation as: \[ \log_{x} \left( \log_{18} (3\sqrt{2}) \right) = \log_{x} \left( \frac{1}{\sqrt{2}} \right) \] ### Step 4: Set the arguments equal Since the bases are the same, we can set the arguments equal: \[ \log_{18} (3\sqrt{2}) = \frac{1}{\sqrt{x}} \] ### Step 5: Solve for \( x \) Now we need to express \( \log_{18} (3\sqrt{2}) \): \[ 3\sqrt{2} = 3 \cdot 2^{1/2} = 3^{1} \cdot 2^{1/2} \] Using the change of base formula: \[ \log_{18} (3\sqrt{2}) = \log_{18} (3) + \log_{18} (2^{1/2}) = \log_{18} (3) + \frac{1}{2} \log_{18} (2) \] ### Step 6: Substitute back into the equation Substituting this back, we have: \[ \log_{18} (3) + \frac{1}{2} \log_{18} (2) = \frac{1}{\sqrt{x}} \] ### Step 7: Isolate \( x \) To isolate \( x \), we take the reciprocal: \[ \sqrt{x} = \frac{1}{\log_{18} (3) + \frac{1}{2} \log_{18} (2)} \] Squaring both sides gives: \[ x = \left( \frac{1}{\log_{18} (3) + \frac{1}{2} \log_{18} (2)} \right)^{2} \] ### Step 8: Calculate the value of \( x \) To find the numerical value, we can compute \( \log_{18} (3) \) and \( \log_{18} (2) \) using the change of base formula: \[ \log_{18} (3) = \frac{\log_{10} (3)}{\log_{10} (18)}, \quad \log_{18} (2) = \frac{\log_{10} (2)}{\log_{10} (18)} \] After calculating these values, we can substitute them back to find \( x \). ### Final Answer After performing the calculations, we find that: \[ x = 4 \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If log_(x)log_(18)(sqrt(2)+sqrt(8))=(1)/(3) , then the value of 32x=

Suppose that log_(10)(x-2)+log_(10)y=0and sqrtx+sqrt(y-2)=sqrt(x+y). Then the value of (x+y) is

Suppose that log_(10)(x-2)+log_(10)y=0and sqrtx+sqrt(y-2)=sqrt(x+y). Then the value of (x+y) is

log(sqrt(x)+1/sqrt(x))

Y=log(4/(sqrt(x+2)+sqrt(2-x)))

{:(Column -I,Column -II),((A)"if" 4^(x)-3^(x-(1)/(2))=3^(x+(1)/(2))-2^(2x-1)"then 2x equals",(P)1),((B)"The number of solutions of" log_(7)log_(5)(sqrt(x+5)+sqrt(x))=0 is,(Q)2),((C)"The number of values of x such that the middle term of",(R)3),(log_(2)2 log_(3)(2^(x)-5)log_(3)(2^(x)-(7)/(2))"is the average of the other two is",),((D)"if" alphabeta "are the roots of the equation",(S)4),(x^(2)-(3+2^(sqrt(log_(2)3)-3sqrt(log_(3)2)))x-2(3log_(3)^(2)-2^(log_(2)^(3)))=0,),("then" 2(alpha+beta)-alpha beta"equals",):}

The length of the interval in which the function f defined as f(x) = log_(2){-log_(1//2)(1+(1)/(6sqrt(x)))-1} is (0, k), then the value of k________.

If log_(sqrt8) b = 3 1/3 , then find the value of b.

If log_(7)log_(7) sqrt(7sqrt(7sqrt(7)))=1-a log_(7)2 and log_(15)log_(15) sqrt(15sqrt(15sqrt(15sqrt(15))))=1-b log_(15)2 , then a+b=

The value of log_((sqrt(2)-1))(5sqrt(2)-7) is :