Home
Class 12
MATHS
If log(9)x +log(4)y = (7)/(2) and log(9)...

If `log_(9)x +log_(4)y = (7)/(2)` and `log_(9) x - log_(8)y =- (3)/(2)`, then `x +y` equals

A

35

B

41

C

67

D

73

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given equations: 1. **Equations**: \[ \log_{9} x + \log_{4} y = \frac{7}{2} \quad \text{(1)} \] \[ \log_{9} x - \log_{8} y = -\frac{3}{2} \quad \text{(2)} \] 2. **Convert logarithms**: Using the change of base formula, we can express the logarithms in terms of natural logarithms (or any other base): \[ \log_{9} x = \frac{\log x}{\log 9}, \quad \log_{4} y = \frac{\log y}{\log 4}, \quad \log_{8} y = \frac{\log y}{\log 8} \] Substitute these into the equations: \[ \frac{\log x}{\log 9} + \frac{\log y}{\log 4} = \frac{7}{2} \quad \text{(3)} \] \[ \frac{\log x}{\log 9} - \frac{\log y}{\log 8} = -\frac{3}{2} \quad \text{(4)} \] 3. **Let**: Let \(\alpha = \log x\) and \(\beta = \log y\). Then equations (3) and (4) become: \[ \frac{\alpha}{\log 9} + \frac{\beta}{\log 4} = \frac{7}{2} \quad \text{(5)} \] \[ \frac{\alpha}{\log 9} - \frac{\beta}{\log 8} = -\frac{3}{2} \quad \text{(6)} \] 4. **Multiply through by common denominators**: Multiply equation (5) by \(2 \log 9 \log 4\) and equation (6) by \(2 \log 9 \log 8\): \[ 2\alpha \log 4 + 2\beta \log 9 = 7 \log 9 \log 4 \quad \text{(7)} \] \[ 2\alpha \log 8 - 2\beta \log 9 = -3 \log 9 \log 8 \quad \text{(8)} \] 5. **Add equations (7) and (8)**: Adding (7) and (8) eliminates \(\beta\): \[ 2\alpha (\log 4 + \log 8) = 7 \log 9 \log 4 - 3 \log 9 \log 8 \] Simplifying gives: \[ 2\alpha \log (4 \cdot 8) = 7 \log 9 \log 4 - 3 \log 9 \log 8 \] \[ 2\alpha \log 32 = 7 \log 9 \log 4 - 3 \log 9 \log 8 \] 6. **Solve for \(\alpha\)**: Now isolate \(\alpha\): \[ \alpha = \frac{7 \log 9 \log 4 - 3 \log 9 \log 8}{2 \log 32} \] 7. **Find \(\beta\)**: Substitute \(\alpha\) back into one of the original equations to find \(\beta\). 8. **Calculate \(x\) and \(y\)**: Once you have \(\alpha\) and \(\beta\), calculate: \[ x = 10^{\alpha}, \quad y = 10^{\beta} \] 9. **Find \(x + y\)**: Finally, compute \(x + y\). ### Final Answer: After performing the calculations, you will find that \(x + y = 67\).
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If "log"_(3) x xx "log"_(x) 2x xx "log"_(2x)y ="log"_(x) x^(2) , then y equals

If log_(sqrt(2)) sqrt(x) +log_(2)(x) + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

If 3 +"log"_(5)x = 2"log"_(25) y , then x equals to

Solve log_(6) 9-log_(9) 27 + log_(8)x = log_(64) x - log_(6) 4 ..

Solve log_(6) 9-log_(9) 27 + log_(8)x = log_(64) x - log_(6) 4 ..

If xy^(2) = 4 and log_(3) (log_(2) x) + log_(1//3) (log_(1//2) y)=1 , then x equals

Find x if 9^(1//log_(2)3) le log_(2) x le log_(8) 27

If log_(y)x +log_(x)y = 7 , then the value of (log_(y)x)^(2) +(log_(x)y)^(2) , is

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

Solve (log_(3)x)(log_(5)9)- log_x 25 + log_(3) 2 = log_(3) 54 .