Home
Class 12
MATHS
If log(y)x +log(x)y = 7, then the value ...

If `log_(y)x +log_(x)y = 7`, then the value of `(log_(y)x)^(2) +(log_(x)y)^(2)`, is

A

43

B

45

C

47

D

49

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \log_y x + \log_x y = 7 \] ### Step 1: Use the property of logarithms We know that: \[ \log_x y = \frac{1}{\log_y x} \] Let \( a = \log_y x \). Then we can rewrite the equation as: \[ a + \frac{1}{a} = 7 \] ### Step 2: Multiply through by \( a \) To eliminate the fraction, multiply both sides by \( a \): \[ a^2 + 1 = 7a \] ### Step 3: Rearrange the equation Rearranging gives us a quadratic equation: \[ a^2 - 7a + 1 = 0 \] ### Step 4: Use the quadratic formula We can solve for \( a \) using the quadratic formula: \[ a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -7, c = 1 \): \[ a = \frac{7 \pm \sqrt{(-7)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] Calculating the discriminant: \[ = \frac{7 \pm \sqrt{49 - 4}}{2} = \frac{7 \pm \sqrt{45}}{2} = \frac{7 \pm 3\sqrt{5}}{2} \] ### Step 5: Find \( a^2 + \frac{1}{a^2} \) Now, we need to find \( a^2 + \frac{1}{a^2} \). We can use the identity: \[ a^2 + \frac{1}{a^2} = \left( a + \frac{1}{a} \right)^2 - 2 \] Substituting \( a + \frac{1}{a} = 7 \): \[ a^2 + \frac{1}{a^2} = 7^2 - 2 = 49 - 2 = 47 \] ### Final Answer Thus, the value of \( \log_y x^2 + \log_x y^2 \) is: \[ \boxed{47} \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If y = log_(10) x , then the value of (dy)/(dx) is

If log_(y) x + log_(x) y = 2, x^(2)+y = 12 , then the value of xy is

Draw the graph of y=(log_(e)x)^(2)

if log_2 x+ log_2 y >= 6 then the least value of x+y

The range of y=log_(3)(9-x^(2))

If log_(10)x+log_(10)y=2, x-y=15 then :

Let x, y in (0, 1) such that there exists a positive number a (ne 1) satsifying log_(x) a + log_(y) a = 4 log_(xy) a Then the value of ((x)/(y))^(((y)/(x))) is …

If "log"_(y) x = "log"_(z)y = "log"_(x)z , then

If 2^(x+y) = 6^(y) and 3^(x-1) = 2^(y+1) , then the value of (log 3 - log 2)//(x-y) is

If the ordered pairs (x_(1), y_(1)) and (x_(2), y_(2)) satisfying the system of equations log_(10)y-log_(10)|x|=log_(100)4 and log_(100)|x+y|=1/2 , find the value of (x_(1)+x_(2)+y_(1)+y_(2))