Home
Class 12
MATHS
If log(2)(log(4)(x))) = 0, log(3)(log(4)...

If `log_(2)(log_(4)(x))) = 0, log_(3)(log_(4)(log_(2)(y))) = 0` and `log_(4)(log_(2)(log_(3)(z))) = 0` then the sum of x,y and z is-

A

29

B

58

C

105

D

50

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

if log_2(log_3(log_4x))=0 and log_3(log_4(log_2y))=0 and log_3(log_2(log_3z))=0 then find the sum of x, y and z is

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

Solve for x: log_(4) log_(3) log_(2) x = 0 .

If log_2 (log_2 (log_3 x)) = log_2 (log_3 (log_2 y))=0 , then the value of (x+y) is

Solve : log_4(log_3(log_2x))=0

Solve : log_(3)x . log_(4)x.log_(5)x=log_(3)x.log_(4)x+log_(4)x.log_(5)+log_(5)x.log_(3)x .

Find x if log_(2) log_(1//2) log_(3) x gt 0

Solve log_(2)((4)/(x+3))>log_(2)(2-x)

If log_(sqrt(2)) sqrt(x) +log_(2)(x) + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

If log_(16)(log_(root(4)(3))(log_(root(3)(5))(x)))=(1)/(2) , find x.