Home
Class 12
MATHS
If log(4)5 = x and log(5)6 = y then...

If `log_(4)5 = x` and `log_(5)6 = y` then

A

`log_(4)6 = xy`

B

`log_(6)4 = xy`

C

`log_(3)2 =(1)/(2xx y-1)`

D

`log_(2)3 (1)/(2x y -1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( xy \) and \( \frac{1}{2xy - 1} \) given that \( \log_{4}5 = x \) and \( \log_{5}6 = y \). ### Step 1: Find \( xy \) We start with the expressions for \( x \) and \( y \): \[ x = \log_{4}5 \quad \text{and} \quad y = \log_{5}6 \] Using the property of logarithms that states \( \log_{a}b = \frac{\log_{c}b}{\log_{c}a} \), we can express \( x \) and \( y \) in terms of a common base, say base \( \alpha \): \[ x = \frac{\log_{\alpha}5}{\log_{\alpha}4} \quad \text{and} \quad y = \frac{\log_{\alpha}6}{\log_{\alpha}5} \] Now, we can find \( xy \): \[ xy = \left(\frac{\log_{\alpha}5}{\log_{\alpha}4}\right) \left(\frac{\log_{\alpha}6}{\log_{\alpha}5}\right) \] The \( \log_{\alpha}5 \) terms cancel out: \[ xy = \frac{\log_{\alpha}6}{\log_{\alpha}4} \] Using the change of base formula again, we can rewrite this as: \[ xy = \log_{4}6 \] ### Step 2: Find \( \frac{1}{2xy - 1} \) Now we need to calculate \( \frac{1}{2xy - 1} \): \[ \frac{1}{2xy - 1} = \frac{1}{2\log_{4}6 - 1} \] We can express \( 2\log_{4}6 \) as: \[ 2\log_{4}6 = \log_{4}6^2 \] Thus, we have: \[ \frac{1}{2xy - 1} = \frac{1}{\log_{4}36 - 1} \] Using the property of logarithms, we can rewrite \( \log_{4}36 \) as: \[ \log_{4}36 = \log_{4}(4 \cdot 9) = \log_{4}4 + \log_{4}9 = 1 + \log_{4}9 \] So, we can substitute this back: \[ \frac{1}{\log_{4}36 - 1} = \frac{1}{\log_{4}9} \] Using the change of base formula again, we have: \[ \frac{1}{\log_{4}9} = \log_{9}4 \] ### Final Result Thus, the final results are: 1. \( xy = \log_{4}6 \) 2. \( \frac{1}{2xy - 1} = \log_{9}4 \)
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If log_(a)5=x and log_(a)7=y , then log_(a)sqrt(1,4)=

If log_(5) x = a and log_(2) y = a ," find "100^(2a-1) in terms of x and y .

If 3 +"log"_(5)x = 2"log"_(25) y , then x equals to

Let x,y,z be positive real numbers such that log_(2x)z=3, log_(5y)z=6 and log_(xy)z=2/3 then the value of z is

If log_(9)x +log_(4)y = (7)/(2) and log_(9) x - log_(8)y =- (3)/(2) , then x +y equals

If log_(y)x +log_(x)y = 7 , then the value of (log_(y)x)^(2) +(log_(x)y)^(2) , is

If x=log_5(1000) and y=log_7(2058) ,then

If "log"_(x) (4x^("log"_(5)x) + 5) = 2 "log"_(5)x , then x equals to

If log_(175)5x=log_(343)7x , then the value of log_(42)(x^(4)-2x^(2)+7) is

Let x_(1) and x_(2) be two solutions of the equalition log_(x)(3x^(log_(5)x)+4) = 2log_(5)x , then the product x_(1)x_(2) is equal to