Home
Class 12
MATHS
If tan^(4)theta +tan^(2) theta = 2, then...

If `tan^(4)theta +tan^(2) theta = 2`, then the value of `cos^(4)theta +cos^(2)theta` is-

A

`(3)/(4)`

B

`(3)/(2)`

C

`(1)/(2)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^4 \theta + \tan^2 \theta = 2 \) and find the value of \( \cos^4 \theta + \cos^2 \theta \), we can follow these steps: ### Step 1: Substitute \( x = \tan^2 \theta \) Let \( x = \tan^2 \theta \). Then the equation becomes: \[ x^2 + x - 2 = 0 \] ### Step 2: Factor the quadratic equation We can factor the quadratic equation: \[ (x - 1)(x + 2) = 0 \] ### Step 3: Solve for \( x \) Setting each factor to zero gives us: \[ x - 1 = 0 \quad \Rightarrow \quad x = 1 \] \[ x + 2 = 0 \quad \Rightarrow \quad x = -2 \quad (\text{not valid since } x = \tan^2 \theta \geq 0) \] Thus, we have \( \tan^2 \theta = 1 \). ### Step 4: Find \( \sec^2 \theta \) Using the identity \( \sec^2 \theta = 1 + \tan^2 \theta \): \[ \sec^2 \theta = 1 + 1 = 2 \] ### Step 5: Relate \( \cos^2 \theta \) to \( \sec^2 \theta \) Since \( \sec^2 \theta = \frac{1}{\cos^2 \theta} \), we can find \( \cos^2 \theta \): \[ \cos^2 \theta = \frac{1}{\sec^2 \theta} = \frac{1}{2} \] ### Step 6: Calculate \( \cos^4 \theta + \cos^2 \theta \) Now we can find \( \cos^4 \theta + \cos^2 \theta \): \[ \cos^4 \theta = (\cos^2 \theta)^2 = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] So, \[ \cos^4 \theta + \cos^2 \theta = \frac{1}{4} + \frac{1}{2} \] ### Step 7: Find a common denominator and simplify To add these fractions, we find a common denominator: \[ \frac{1}{4} + \frac{2}{4} = \frac{3}{4} \] ### Final Answer Thus, the value of \( \cos^4 \theta + \cos^2 \theta \) is: \[ \boxed{\frac{3}{4}} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If cos theta+cos^(2)theta=1 , the value of sin^(2)theta+sin^(4)theta is

If tan theta = b/a, then find the value of a cos 2theta + b sin 2theta .

If sin theta = cos theta find the value of : 3 tan ^(2) theta+ 2 sin ^(2) theta -1

What is the value of 6tan^2theta-6/(cos^2theta) ?

If 4sin^(2)theta-1=0 and angle theta is less than 90^(@) , find the value of theta and hence the value of cos^(2)theta+tan^(2)theta .

If 4sin^(2)theta-1=0 and angle theta is less than 90^(@) , find the value of theta and hence the value of cos^(2)theta+tan^(2)theta .

The value of 3(cos theta-sin theta)^(4)+6(sin theta+cos theta)^(2)+4 sin^(6) theta is where theta in ((pi)/(4),(pi)/(2)) (a) 13-4cos^(4) theta (b) 13-4cos^(6) theta (c) 13-4cos^(6) theta+ 2 sin^(4) theta cos^(2) theta (d) 13-4cos^(4) theta+ 2 sin^(4) theta cos^(2) theta

If tan theta=2, then the find the value of (2sinthetacostheta)/(cos^(2)theta-sin^(2)theta) .

If tan theta=-3/4 and pi/2 < theta < pi, find the values of sin theta,cos theta and cot theta .

If theta is an acute angle such that sec^2theta=3 , then the value of (tan^2theta-cos e c^2theta)/(tan^2theta+cos e c^2theta) is (a) 4/7 (b) 3/7 (c) 2/7 (d) 1/7