Home
Class 12
MATHS
{:(Column -I,Column -II),((A)"Anti logar...

`{:(Column -I,Column -II),((A)"Anti logarithm of" (0.bar(6))"to the base 27 has the value equal to",(P)5),((B)"Characteristic of the logarithm of 2008 to the base 2 is",(Q)7),((C)"The value of b satisfying the equation",(R)9),(log_(e)2.log_(b)625=log_(10)16.log_(e)10 is,),((D)"Number of naughts after decimal before a significant figure",(S)10),("comes in the number" ((5)/(6))^(100)is,):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the equations and find the required values step by step. ### Step 1: Understand the equation We are given the equation: \[ 2a^2 + 3b^2 = 35 \] where \( a \) and \( b \) are integers (denoted by \( Z \)). ### Step 2: Rearranging the equation We can rearrange the equation to express it in a more manageable form: \[ 3b^2 = 35 - 2a^2 \] This implies that \( 35 - 2a^2 \) must be non-negative since \( b^2 \) cannot be negative. Therefore: \[ 35 - 2a^2 \geq 0 \] This leads to: \[ 2a^2 \leq 35 \] or \[ a^2 \leq 17.5 \] Thus, \( a \) can take integer values from \( -4 \) to \( 4 \) (since \( 4^2 = 16 \) and \( 5^2 = 25 \) which exceeds 17.5). ### Step 3: Finding possible values for \( a \) The possible integer values for \( a \) are: \[ a = -4, -3, -2, -1, 0, 1, 2, 3, 4 \] This gives us a total of 9 possible values for \( a \). ### Step 4: Finding corresponding values for \( b \) Now, we will substitute each value of \( a \) into the equation \( 2a^2 + 3b^2 = 35 \) and solve for \( b \). 1. **For \( a = -4 \) or \( a = 4 \)**: \[ 2(4^2) + 3b^2 = 35 \implies 32 + 3b^2 = 35 \implies 3b^2 = 3 \implies b^2 = 1 \implies b = \pm 1 \] Possible pairs: \( (-4, 1), (-4, -1), (4, 1), (4, -1) \) 2. **For \( a = -3 \) or \( a = 3 \)**: \[ 2(3^2) + 3b^2 = 35 \implies 18 + 3b^2 = 35 \implies 3b^2 = 17 \implies b^2 = \frac{17}{3} \quad \text{(not an integer)} \] 3. **For \( a = -2 \) or \( a = 2 \)**: \[ 2(2^2) + 3b^2 = 35 \implies 8 + 3b^2 = 35 \implies 3b^2 = 27 \implies b^2 = 9 \implies b = \pm 3 \] Possible pairs: \( (-2, 3), (-2, -3), (2, 3), (2, -3) \) 4. **For \( a = -1 \) or \( a = 1 \)**: \[ 2(1^2) + 3b^2 = 35 \implies 2 + 3b^2 = 35 \implies 3b^2 = 33 \implies b^2 = 11 \quad \text{(not an integer)} \] 5. **For \( a = 0 \)**: \[ 2(0^2) + 3b^2 = 35 \implies 3b^2 = 35 \implies b^2 = \frac{35}{3} \quad \text{(not an integer)} \] 6. **For \( a = -2 \) or \( a = 2 \)** (already calculated). ### Step 5: Collect all valid pairs The valid integer pairs \( (a, b) \) we found are: 1. \( (-4, 1) \) 2. \( (-4, -1) \) 3. \( (4, 1) \) 4. \( (4, -1) \) 5. \( (-2, 3) \) 6. \( (-2, -3) \) 7. \( (2, 3) \) 8. \( (2, -3) \) ### Conclusion Thus, the total number of valid pairs \( (a, b) \) is 8. ### Final Answer The answer to the question is: **Option C: 8**
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

The value of x satisfying the equation log_(2)(x^(2)-2x+5)=2 is "(a) 1 (b) 0 (c) -1 (d) 2 "

The value of x satisfying the equation 3sqrt(5)^((log_5) 5^(((log)_5(log)_5log_5(x/2))) = 3 1 (b) 3 (c) 18 (d) 54

The set of all x satisfying the equation x^(log)_3x^2+((log)_3x)^(2-10)=1/(x^2)i s 1 (b) 2 (c) 3 (d) 0

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

Number of real values of x satisfying the equation (log)_2(x^2-x)(log)_2((x-1)/x)+((log)_2x)^2=4,i s 0 (b) 2 (c) 3 (d) 7

The number of elements in set of all x satisfying the equation x^(log_3x^2+(log_3x)^2-10)=1/(x^2)i s (a)1 (b) 2 (c) 3 (d) 0

Given that log_2(3)=a,log_3(5)=b,log_7(2)=c , express the logrithm of the number 63 to the base 140 in terms of a,b & c.

If number of integral values of x satisfying the inequality ((x)/(100))^(7logx-log^(2)x-6)ge10^(12) are alpha then

{:(Column -I,Column -II),((A)"if" 4^(x)-3^(x-(1)/(2))=3^(x+(1)/(2))-2^(2x-1)"then 2x equals",(P)1),((B)"The number of solutions of" log_(7)log_(5)(sqrt(x+5)+sqrt(x))=0 is,(Q)2),((C)"The number of values of x such that the middle term of",(R)3),(log_(2)2 log_(3)(2^(x)-5)log_(3)(2^(x)-(7)/(2))"is the average of the other two is",),((D)"if" alphabeta "are the roots of the equation",(S)4),(x^(2)-(3+2^(sqrt(log_(2)3)-3sqrt(log_(3)2)))x-2(3log_(3)^(2)-2^(log_(2)^(3)))=0,),("then" 2(alpha+beta)-alpha beta"equals",):}

If P is the number of natural numbers whose logarithms to the base 10 have the characteristic pa n dQ is the number of natural numbers logarithms of whose reciprocals to the base 10 have the characteristic -q , then find the value of log_(10)P-(log)_(10)Qdot