Home
Class 12
MATHS
If b gt 1, x gt 0 and (2x)^(log(b) 2)-(3...

If `b gt 1, x gt 0` and `(2x)^(log_(b) 2)-(3x)^(log_(b) 3)=0`, then x is

A

`1/216`

B

`1/6`

C

`1`

D

`6`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a gt 1, x gt 0 and 2^(log_(a)(2x))=5^(log_(a)(5x)) , then x is equal to

Solve for x: (2x)^(log_(b) 2) = (3x)^(log_(b)3) .

(a^(log_b x))^2-5x^(log_b a)+6=0

Solve for: x :(2x)^((log)_b2)=(3x)^((log)_b3) .

(log x)^(log x),x gt1

The solution of the equation 5^(log_(a)x)+5x^(log_(a)5)=3, a gt0 , is

Solve for x: log_(4) log_(3) log_(2) x = 0 .

Find x if log_(2) log_(1//2) log_(3) x gt 0

If 0 lt a lt 1 , then the solution set of the inequation (1+(log_(a)x)^(2))/(1+(log_(a)x)) gt1 , is

Statement - 1 : If x gt 1 then log_(10)x lt log_(3)x lt log_(e )x lt log_(2)x . Statement - 2 : If 0 lt x lt 1 , then log_(x)a gt log_(x)b implies a lt b .