Home
Class 12
MATHS
Suppose that log10(x-2)+log10y=0 sqrtx+s...

Suppose that `log_10(x-2)+log_10y=0` `sqrtx+sqrt(y-2)=sqrt(x+y)`.
The value of y is

A

2

B

`2sqrt(2)`

C

`2+2sqrt(2)`

D

`4+2sqrt(2)`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Suppose that log_(10)(x-2)+log_(10)y=0and sqrtx+sqrt(y-2)=sqrt(x+y). Then the value of (x+y) is

Suppose that log_(10)(x-2)+log_(10)y=0and sqrtx+sqrt(y-2)=sqrt(x+y). Then the value of (x+y) is

Suppose that log_10(x-2)+log_10y=0 sqrtx+sqrt(y-2)=sqrt(x+y) . If x^(2t^2-6)+y^(6-2t^2)=6 ,, the value of t_1,t_2,t_3,t_4 is

y=log[sqrt(x-a)+sqrt(x-b)]

If log_(y) x + log_(x) y = 2, x^(2)+y = 12 , then the value of xy is

Consider equations x^(log_(y)x) = 2 and y^(log_(x)y) = 16 . The value of x is

If log_(10)x+log_(10)y=2, x-y=15 then :

If y = log_(10) x , then the value of (dy)/(dx) is

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :

If x = "log"_(0.1) 0.001, y = "log"_(9) 81 , then sqrt(x - 2sqrt(y)) is equal to