Home
Class 12
MATHS
Statement-1 : "cos"pi/7+"cos"(2pi)/7+"co...

Statement-1 : `"cos"pi/7+"cos"(2pi)/7+"cos"(3pi)/7+"cos"(4pi)/7+"cos"(5pi)/7+"cos"(6pi)/7` vanishes
Statement-2 : Sum of the cosines of two supplementary angles vanishes.

A

Statement-1 is true, statement-2 is true, statement-2 is a correct explanation for statement-1.

B

Statement-1 is true, statement-2 is true, statement-2 is Not a correct explanation for statement-1.

C

Statement-1 is true, statement-2 is false.

D

Statement-1 is false, statement-2 is true.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Find the value of cospi/7+cos(2pi)/7+cos(3pi)/7+cos(4pi)/7+cos(5pi)/7+cos(6pi)/+cos(7pi)/7

Prove that : cos(pi/7)cos((2pi)/7) cos((3pi)/7)=1/8

cospi/5+cos(2pi)/5+cos(6pi)/5+cos(7pi)/5=0

Prove that "cos"(pi)/9."cos"(2pi)/9."cos"(3pi)/9."cos"(4pi)/9=1/(2^(4))

"cos(pi/15)cos((2pi)/15)cos((4pi)/15)cos((8pi)/15)=k

Find the value of cos(2pi)/7+cos(4pi)/7+cos(6pi)/7

Prove that: cos(pi/7)cos((2pi)/7)cos((4pi)/7)=-1/8

Prove that: cos(pi/7)cos(2pi/7)cos(4pi/7)=-1/8,

cos(pi/11) cos((2pi)/11) cos((3pi)/11)....cos((11pi)/11)=

The value of cos(pi/7)+cos((2pi)/7)+cos((3pi)/7)+cos((4pi)/7)+cos((5pi)/7)+cos((6pi)/7)+cos((7pi)/7) is 1 (b) -1 (c) 0 (d) none of these