Home
Class 12
MATHS
If a/b=c/d=e/f, then show that (a^(3)b+2...

If `a/b=c/d=e/f,` then show that `(a^(3)b+2c^(2)e-3ae^(2)f)/(b^(4)+2d^(2)f-3bf^(3))=(ace)/(bdf)`(wherever defined)

Text Solution

AI Generated Solution

To solve the problem, we start with the given condition: **Given:** \[ \frac{a}{b} = \frac{c}{d} = \frac{e}{f} = k \] From this, we can express \(a\), \(c\), and \(e\) in terms of \(b\), \(d\), and \(f\) respectively: ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHS

    ALLEN|Exercise Exercise(O-1)|15 Videos
  • BASIC MATHS

    ALLEN|Exercise Exercise(S-1)|10 Videos
  • APPLICATION OF DERIVATIVES

    ALLEN|Exercise All Questions|1 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

For all def ne 0, (4d^(3)e^(4)f^(2))/((2de^(3)f)^(2))=

If (a)/(2b) = (c )/(d) = (e )/(3f) , then the value of (2a^(4)b^(2)+3a^(2)c^(2)-5e^(4)f)/(32b^(6)+12b^(2)d^(2)-405f^(5)) is

(a)/(b) = (c)/(d) = (e)/(f) = k(a, b, c, d, e, f gt 0) then (A) k = (a + c +e)/(b + d + f) (B) k = (a^(2) + c^(2) +e^(2))/(b^(2) + d^(2) + f^(2)) (C) k = (c^(2)e^(2))/(d^(2)f^(2)) (D) k = ((ace)/(bdf))^((1)/(3))

if a : b = e : d , show that : 3a + 2b : 3a - 2b = 3c + 2d : 3c - 2d .

If f^(prime)(x)=f(x)+int_0^1f(x)dx ,gi v e nf(0)=1, then the value of f((log)_e 2) is (a) 1/(3+e) (b) (5-e)/(3-e) (c) (2+e)/(e-2) (d) none of these

If f(x) is a twice differentiable function such that f(a)=0, f(b)=2, f(c)=-1,f(d)=2, f(e)=0 where a < b < c < d e, then the minimum number of zeroes of g(x) = f'(x)^2+f''(x)f(x) in the interval [a, e] is

If f^(prime)(a)=1/4, t h e n(lim)_(hvec0)(f(a+2h^2)-f(a-2h^2))/(f(a+h^3-h^2)-f(a-h^3+h^2))= 0 b. 1 c. -2 d. none of these

if a,b,c,d,e and f are six real numbers such that a+b+c=d+e+f a^2+b^2+c^2=d^2+e^2+f^2 and a^3+b^3+c^3=d^3+e^3+f^3 , prove by mathematical induction that a^n+b^n+c^n=d^n+e^n+f^n forall n in N .

Let a , b , c , d , e ,f in R such that a d+b e+cf=sqrt((a^2+b^2+c^2)(d^2+e^2+f^2)) Use vector to prove that (a+b+c)/(sqrt(b^2+b^2+c^2))=(d+e+f)/(sqrt(d^2+e^2+f^2))

Remove the brackets and simplify : 3(e - 2f ) - 4c +3 ( 2e -3f)