Home
Class 12
MATHS
If (4+3sqrt5)/(4-3sqrt5)=a+bsqrt5,a, b a...

If `(4+3sqrt5)/(4-3sqrt5)=a+bsqrt5`,a, b are rational numbers, them (a, b)=

A

`(61/29,(-24)/29)`

B

`((-61)/29,24/29)`

C

`(61/29,24/29)`

D

`((-61)/29,(-24)/29)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(\frac{4 + 3\sqrt{5}}{4 - 3\sqrt{5}} = a + b\sqrt{5}\), where \(a\) and \(b\) are rational numbers, we will rationalize the denominator and express the result in the required form. ### Step-by-Step Solution: 1. **Rationalize the Denominator**: We multiply the numerator and the denominator by the conjugate of the denominator, which is \(4 + 3\sqrt{5}\): \[ \frac{4 + 3\sqrt{5}}{4 - 3\sqrt{5}} \cdot \frac{4 + 3\sqrt{5}}{4 + 3\sqrt{5}} = \frac{(4 + 3\sqrt{5})^2}{(4 - 3\sqrt{5})(4 + 3\sqrt{5})} \] 2. **Calculate the Denominator**: Using the difference of squares formula, we have: \[ (4 - 3\sqrt{5})(4 + 3\sqrt{5}) = 4^2 - (3\sqrt{5})^2 = 16 - 45 = -29 \] 3. **Calculate the Numerator**: Now, we expand the numerator: \[ (4 + 3\sqrt{5})^2 = 4^2 + 2 \cdot 4 \cdot 3\sqrt{5} + (3\sqrt{5})^2 = 16 + 24\sqrt{5} + 45 = 61 + 24\sqrt{5} \] 4. **Combine the Results**: Now we can write the expression: \[ \frac{61 + 24\sqrt{5}}{-29} = \frac{61}{-29} + \frac{24\sqrt{5}}{-29} = -\frac{61}{29} - \frac{24}{29}\sqrt{5} \] 5. **Identify \(a\) and \(b\)**: From the expression \(-\frac{61}{29} - \frac{24}{29}\sqrt{5}\), we can identify: \[ a = -\frac{61}{29}, \quad b = -\frac{24}{29} \] Thus, the values of \(a\) and \(b\) are: \[ (a, b) = \left(-\frac{61}{29}, -\frac{24}{29}\right) \]
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHS

    ALLEN|Exercise Exercise(S-1)|10 Videos
  • BASIC MATHS

    ALLEN|Exercise Do yourself -1 :|4 Videos
  • BASIC MATHS

    ALLEN|Exercise Do yourself -2 :|4 Videos
  • APPLICATION OF DERIVATIVES

    ALLEN|Exercise All Questions|1 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Prove that sqrt5 and 3sqrt5 are irrational numbers.

Find 3 rational numbers between 4 and 5

Write three rational numbers between sqrt(3) and sqrt(5)

solve (3sqrt5 +sqrt3)/(sqrt5 -sqrt3)

If (3 + sqrt7)/(3 - sqrt7) = a + bsqrt7 , then ( a , b ) =

((4 +sqrt5)/(4-sqrt5)) +((4-sqrt5)/(4+sqrt5)) =?

Let a,b inQ"such that"(39sqrt2-5)/(3-sqrt2)=a+bsqrt2, then (A) sqrt((b)/(a)) is a rational number (B) b and a are coprime rational numbers (C) b-a is a composite number (D) sqrt(a+b) is a rational number

If (3+asqrt2)^100+(3+bsqrt2)^100=7+5sqrt2 number of pairs (a, b) for which the equation is true is, (a, b are rational numbers) (a) 1 (b) 6 (c) 0 (d) infinite

If (3+2sqrt2)/(3-sqrt2)=a+bsqrt2, "then a & b"(a, b inQ) are respectively equal to

If a+bsqrt(5)=(4-3sqrt(5))/(4+3sqrt(5)) , then find the values of a and b.