Home
Class 12
MATHS
sqrt(21-4sqrt5+8sqrt3-4sqrt12)=...

`sqrt(21-4sqrt5+8sqrt3-4sqrt12)=`

A

`sqrt5-2+2sqrt3`

B

`-sqrt5-sqrt4-sqrt12`

C

`-sqrt5+sqrt4+sqrt12`

D

`-sqrt5-sqrt4+sqrt12`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{21 - 4\sqrt{5} + 8\sqrt{3} - 4\sqrt{12}} \), we will simplify it step by step. ### Step 1: Rewrite the expression We start with the expression: \[ \sqrt{21 - 4\sqrt{5} + 8\sqrt{3} - 4\sqrt{12}} \] We can rewrite \( 21 \) as \( 20 + 1 \) and \( 4\sqrt{12} \) as \( 4 \cdot 2\sqrt{3} = 8\sqrt{3} \). Thus, we have: \[ \sqrt{(20 + 1) - 4\sqrt{5} + 8\sqrt{3} - 8\sqrt{3}} \] This simplifies to: \[ \sqrt{21 - 4\sqrt{5}} \] ### Step 2: Combine like terms Notice that \( 8\sqrt{3} - 8\sqrt{3} = 0 \), so we can ignore that part. The expression now looks like: \[ \sqrt{21 - 4\sqrt{5}} \] ### Step 3: Express \( 21 - 4\sqrt{5} \) in a different form We want to express \( 21 - 4\sqrt{5} \) in the form of \( (a - b)^2 \). Let's assume: \[ 21 - 4\sqrt{5} = (x - y)^2 \] Expanding \( (x - y)^2 \) gives us: \[ x^2 - 2xy + y^2 \] We need to find \( x \) and \( y \) such that: - \( x^2 + y^2 = 21 \) - \( 2xy = 4\sqrt{5} \) ### Step 4: Solve for \( x \) and \( y \) From \( 2xy = 4\sqrt{5} \), we can simplify to: \[ xy = 2\sqrt{5} \] Now we have two equations: 1. \( x^2 + y^2 = 21 \) 2. \( xy = 2\sqrt{5} \) Using the identity \( (x + y)^2 = x^2 + y^2 + 2xy \), we can express \( x + y \): \[ (x + y)^2 = 21 + 4\sqrt{5} \] ### Step 5: Find \( x \) and \( y \) Let's assume \( x = \sqrt{5} + 4 \) and \( y = \sqrt{5} - 1 \). Then: \[ x^2 + y^2 = (\sqrt{5} + 4)^2 + (\sqrt{5} - 1)^2 \] Calculating: \[ = (5 + 8\sqrt{5} + 16) + (5 - 2\sqrt{5} + 1) = 21 + 6\sqrt{5} \] ### Step 6: Final simplification Now we can express: \[ \sqrt{21 - 4\sqrt{5}} = \sqrt{(\sqrt{5} + 4 - (\sqrt{5} - 1))^2} = \sqrt{(5 - 1)^2} = \sqrt{4^2} = 4 \] Thus, the final answer is: \[ \sqrt{21 - 4\sqrt{5} + 8\sqrt{3} - 4\sqrt{12}} = \sqrt{20 - 1} = 4 \]
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHS

    ALLEN|Exercise Exercise(S-1)|10 Videos
  • BASIC MATHS

    ALLEN|Exercise Do yourself -1 :|4 Videos
  • BASIC MATHS

    ALLEN|Exercise Do yourself -2 :|4 Videos
  • APPLICATION OF DERIVATIVES

    ALLEN|Exercise All Questions|1 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Prove that tan 7 (1^(@))/(2) = sqrt2 - sqrt3 -sqrt4 + sqrt6 = (sqrt3 - sqrt2) (sqrt2 -1).

Prove that cot 7 ""(1^(@))/(2) = sqrt2 + sqrt3 + sqrt4 + sqrt6 = (sqrt3 + sqrt2) (sqrt2 +1 ).

(sqrt15+sqrt35+sqrt21+5)/(sqrt3+2sqrt5+sqrt7)=?

Find the value of '(sqrt(32)+sqrt(48))/sqrt(8)+sqrt(12))

Simplify the following expressions: (i) (4+sqrt(7))(3+sqrt(2)) (ii) (3+sqrt(3))(5-sqrt(2)) (iii) (sqrt(5)-2)(sqrt(3)-sqrt(5)) (iv) (sqrt(5)+sqrt(2))(sqrt(3)+sqrt(2))

Which of the following is equal to root(3)(-1) a. (sqrt(3)+sqrt(-1))/2 b. (-sqrt(3)+sqrt(-1))/(sqrt(-4)) c. (sqrt(3)-sqrt(-1))/(sqrt(-4)) d. -sqrt(-1)

The value of 6+ log_(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)...)))) is ________.

Find (sqrt 3 - sqrt 5)(sqrt 5+ sqrt3)

3sqrt(2^(5))sqrt(4^(9))sqrt(8)=

If B=(12)/(3+sqrt5+sqrt8)andA=sqrt1+sqrt2+sqrt5-sqrt10, then value of log_(A)B is