Home
Class 12
MATHS
If 4/(2+sqrt3+sqrt7)=sqrta+sqrtb-sqrtc,t...

If `4/(2+sqrt3+sqrt7)=sqrta+sqrtb-sqrtc`,then which of the following can be true -

A

a=1, b=4/3, c=7/3

B

`a=1, b=2/3, c=7/9

C

a=2/3, b=1, c=7/3

D

a= 7/9, b=4/3, c=1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \frac{4}{2 + \sqrt{3} + \sqrt{7}} = \sqrt{a} + \sqrt{b} - \sqrt{c} \), we will follow these steps: ### Step 1: Rationalize the Denominator We start with the expression on the left side: \[ \frac{4}{2 + \sqrt{3} + \sqrt{7}} \] To rationalize the denominator, we multiply the numerator and denominator by the conjugate of the denominator, which is \( 2 + \sqrt{3} - \sqrt{7} \): \[ \frac{4(2 + \sqrt{3} - \sqrt{7})}{(2 + \sqrt{3} + \sqrt{7})(2 + \sqrt{3} - \sqrt{7})} \] ### Step 2: Simplify the Denominator Using the difference of squares formula \( (a + b)(a - b) = a^2 - b^2 \): \[ (2 + \sqrt{3})^2 - (\sqrt{7})^2 \] Calculating \( (2 + \sqrt{3})^2 \): \[ = 4 + 4\sqrt{3} + 3 = 7 + 4\sqrt{3} \] Now calculating \( (\sqrt{7})^2 \): \[ = 7 \] Thus, the denominator becomes: \[ (7 + 4\sqrt{3}) - 7 = 4\sqrt{3} \] ### Step 3: Substitute Back Now substituting back into our expression: \[ \frac{4(2 + \sqrt{3} - \sqrt{7})}{4\sqrt{3}} = \frac{2 + \sqrt{3} - \sqrt{7}}{\sqrt{3}} \] ### Step 4: Separate the Terms We can separate the terms in the numerator: \[ \frac{2}{\sqrt{3}} + \frac{\sqrt{3}}{\sqrt{3}} - \frac{\sqrt{7}}{\sqrt{3}} = \frac{2}{\sqrt{3}} + 1 - \frac{\sqrt{7}}{\sqrt{3}} \] ### Step 5: Combine into a Single Expression Now we can express this as: \[ 1 + \frac{2 - \sqrt{7}}{\sqrt{3}} \] ### Step 6: Express in the Form \( \sqrt{a} + \sqrt{b} - \sqrt{c} \) To express \( \frac{2 - \sqrt{7}}{\sqrt{3}} \) in the form \( \sqrt{b} - \sqrt{c} \), we can multiply the numerator and denominator by \( \sqrt{3} \): \[ = \sqrt{3} \cdot \frac{2 - \sqrt{7}}{3} = \sqrt{3} \cdot \left( \frac{2}{3} - \frac{\sqrt{7}}{3} \right) \] Thus, we can identify: - \( a = 1 \) - \( b = \frac{4}{3} \) - \( c = \frac{7}{3} \) ### Conclusion Thus, we find that: - \( a = 1 \) - \( b = \frac{4}{3} \) - \( c = \frac{7}{3} \) The correct option is \( a \).
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHS

    ALLEN|Exercise Exercise(S-1)|10 Videos
  • BASIC MATHS

    ALLEN|Exercise Do yourself -1 :|4 Videos
  • BASIC MATHS

    ALLEN|Exercise Do yourself -2 :|4 Videos
  • APPLICATION OF DERIVATIVES

    ALLEN|Exercise All Questions|1 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If A=sqrt(sin2-sin sqrt(3)), B=sqrt(cos2-cos sqrt(3)) , then which of the following statement is true ?

(3-sqrt7)(3+sqrt7)=?

If p = (sqrt(3) - 2)/(sqrt(2) + 1) , then which one of the following equals p - 4 ?

If (3 + sqrt7)/(3 - sqrt7) = a + bsqrt7 , then ( a , b ) =

The centre of an ellipse is at origin and its major axis coincides with x-axis. The length of minor axis is equal to distance between foci and passes through the point (sqrt29, 2sqrt(29/5)) , then which of the following points lie on ellipse (A) (4sqrt3, 2sqrt2) (B) (4sqrt3, 2sqrt3) (C) (4sqrt2, 2sqrt3) (D) (4sqrt2, 2sqrt2)

(sqrt(7)+2sqrt(3))(sqrt(7)-2sqrt(3))

If sqrt (7 sqrt (7 sqrt7 sqrt7 sqrt7)) = 7 ^(x) then find the value of x

Find: (sqrt7 +sqrt3)(3-sqrt3)

If sqrt(9+sqrt48-sqrt32-sqrt24)=sqrta-sqrtb+2 ,where a,b inN , then find the value of a + b.

Let alpha = 3 cos^(-1) (5/sqrt28) + 3 tan^(-1) ( sqrt3/2) " and " beta = 4 sin ^(-1) ((7sqrt2)/10) - 4 tan^(-1) (3/4) , then which of the following does not hold (s) good ?