Home
Class 12
MATHS
(x^(1/(a-b)))^(1/(a-c))xx(x^(1/(b-c)))^(...

`(x^(1/(a-b)))^(1/(a-c))xx(x^(1/(b-c)))^(1/(b-a))xx(x^(1/(c-a)))^(1/(c-b))`

A

1

B

8

C

0

D

None

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHS

    ALLEN|Exercise Exercise(S-1)|10 Videos
  • BASIC MATHS

    ALLEN|Exercise Do yourself -1 :|4 Videos
  • BASIC MATHS

    ALLEN|Exercise Do yourself -2 :|4 Videos
  • APPLICATION OF DERIVATIVES

    ALLEN|Exercise All Questions|1 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Assuming that x is a positive real number and a ,\ b ,\ c are rational numbers, show that: ((x^a)/(x^b))^(1/(a b))\ ((x^b)/(x^c))^(1/(b c))\ \ ((x^c)/(x^a))^(1/(a c))=1

Simplify: (i)\ ((x^(a+b))/(x^c))^(a-b)\ ((x^(b+c))/(x^a))^(b-c)\ ((x^(c+a))/(x^b))^(c-a) (ii)\ ((x^l)/(x^m))^(1/(lm))\ xx\ ((x^m)/(x^n))^(1/(mn))\ xx\ \ ((x^n)/(x^l))^(1/(ln))

If x is a positive real number and the exponents are rational numbers, show that: ((x^a)/(x^b))^(a+b-c)\ ((x^b)/(x^c))^(b+c-a)((x^c)/(x^a))^(c+a-b)=1

Show that: (i)\ (x^(a-b))^(a+b)\ (x^(b-c))^(b+c)\ (x^(c-a))^(c+a)=1 (ii)\ {(x^(a-a^(-1)))^(1/(a-1))}^(a/(a+1))=x

Show that : (x^(a(b-c)))/(x^(b(a-c)))÷((x^b)/(x^a))^c=1 ((x^(a+b))^2(x^(b+c))^2 (x^(c+a))^2)/((x^a x^b x^c)^4)=1

Prove that: ((x^a)/(x^(b)))^(a^(2+a b+b^2))\ xx\ ((x^b)/(x^(c)))^(b^(2+b c+c^2))\ xx\ ((x^c)/(x^(a)))^(c^(2+c a+a^2))=1

If y=1/(1+x^(a-b)+x^(c-b))+1/(1+x^(b-c)+x^(a-c))+1/(1+x^(b-a)+x^(c-a)), then (dy)/(dx) is equal to (a) 1 (b) (a+b+c)^(x+b+c-1) 0 (d) none of these

If y=1/(1+x^(a-b)+x^(c-b))+1/(1+x^(b-c)+x^(a-c))+1/(1+x^(b-a)+x^(c-a)), then (dy)/(dx) is equal to (a) 1 (b) (a+b+c)^(x+b+c-1) 0 (d) none of these

Show that : (i) x^(a(b-c))/(x^(b(a-c)))/((x^b)/(x^a))^c=1 , (ii) ((x^(a+b))^2(x^(b+c))^2(x^(c+a))^2)/((x^a x^b x^c)^4)=1

For any positive real number x;write the value of {(x^a)^b}^(1/(ab)) {(x^b)^c}^(1/(bc)) {(x^c)^a}^(1/(ca))