Home
Class 12
MATHS
(0.000729)^(-3//4)xx(0.09)^(-3//4)=...

`(0.000729)^(-3//4)xx(0.09)^(-3//4)=`

A

`10^(3)/3^(3)`

B

`10^(5)/3^(5)`

C

`10^(2)/3^(2)`

D

`10^(6)/3^(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((0.000729)^{-3/4} \times (0.09)^{-3/4}\), we can follow these steps: ### Step 1: Rewrite the numbers in fraction form We can express \(0.000729\) and \(0.09\) as fractions: \[ 0.000729 = \frac{729}{1000000} \quad \text{and} \quad 0.09 = \frac{9}{100} \] ### Step 2: Rewrite the expression Now we can rewrite the expression: \[ (0.000729)^{-3/4} \times (0.09)^{-3/4} = \left(\frac{729}{1000000}\right)^{-3/4} \times \left(\frac{9}{100}\right)^{-3/4} \] ### Step 3: Apply the power property Using the property of exponents \((a/b)^n = a^n / b^n\), we can separate the fractions: \[ = \frac{729^{-3/4}}{(1000000)^{-3/4}} \times \frac{9^{-3/4}}{(100)^{-3/4}} \] ### Step 4: Simplify the bases Now let's simplify \(1000000\) and \(100\): \[ 1000000 = 10^6 \quad \text{and} \quad 100 = 10^2 \] So we can rewrite the expression as: \[ = \frac{729^{-3/4} \times 9^{-3/4}}{(10^6)^{-3/4} \times (10^2)^{-3/4}} \] ### Step 5: Combine the powers Now we can combine the powers: \[ = \frac{(729 \times 9)^{-3/4}}{(10^6 \times 10^2)^{-3/4}} = \frac{(729 \times 9)^{-3/4}}{10^{(6+2)(-3/4)}} \] \[ = \frac{(729 \times 9)^{-3/4}}{10^{-6}} \] ### Step 6: Calculate \(729 \times 9\) Next, we calculate \(729 \times 9\): \[ 729 = 27^2 = (3^3)^2 = 3^6 \quad \text{and} \quad 9 = 3^2 \] Thus, \[ 729 \times 9 = 3^6 \times 3^2 = 3^{6+2} = 3^8 \] ### Step 7: Substitute back into the expression Now substituting back, we have: \[ = \frac{(3^8)^{-3/4}}{10^{-6}} = \frac{3^{-6}}{10^{-6}} \] ### Step 8: Simplify the expression This simplifies to: \[ = 10^6 \times 3^{-6} = \frac{10^6}{3^6} \] ### Final Answer Thus, the final answer is: \[ \frac{10^6}{3^6} \] ---
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHS

    ALLEN|Exercise Exercise(S-1)|10 Videos
  • BASIC MATHS

    ALLEN|Exercise Do yourself -1 :|4 Videos
  • BASIC MATHS

    ALLEN|Exercise Do yourself -2 :|4 Videos
  • APPLICATION OF DERIVATIVES

    ALLEN|Exercise All Questions|1 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Simplify: (0.00081)/(0.09)

Evaluate ((1)/(4))^(-2)-3(8)^(2//3)xx4^(0)+((9)/(10))^(-1//2)

Which of these-five numbers sqrt(pi^(2)),""^(3)sqrt(0.08),""^(4)sqrt(0.00016),""^(3)sqrt(-1),sqrt((0.09)^(-1)), is (are) rational

Simplify : ((8)/(27))^(-1//3)xx((25)/(4))^(1//2)xx((4)/(9))^(0)+((125)/(64))^(1//3)

(256)^(0. 16)xx(256)^(0. 09)=?

A beer has a pH of 4.30. What is the [H_(3)O^(+)] ? (a) 3.0xx10^(-4) (b) 2.0xx10^(-4) (c) 2.0xx10^(5) (d) 5.0xx10^(-5)

Evaluate : a. 3^(2)xx10^(3) b. (-1)^(19) c. 0xx15^(5) d. ((2)/(5))^(3) e. 3^(2)xx3^(5) f. (-4)^(10)xx4^(100) g. 6^(10-:6^(5) h. (-2^(5))^(2) i. 7^(7)-:7^(5) j. 10^(5)-:10^(5) k. 11^(0)xx(-5)^(0)xx3^(0) l. (100^(0)+50^(0))xx(-25)^(0)

Solve with due regard to significant figure. (3.0 xx10^(-8))+ (4.5 xx 10^(-6)) =

Evaluate : 1. 7^(0)xx4^(0)xx8^(0) 2. (9^(0)+7^(0))xx3^(0)

The dissociations constant (K_b) " for " NH_3 ,CH_3NH_2, (CH_2)_2 NH and (CH_3)_3 N " are " 0.2 xx 10^(-4) ,4.2 xx 10 ^(-4) , 6 .0 xx 10 ^(-4) and 0.6 xx 10 ^(-4) respectively . Which one is the strongest base and why?