Home
Class 12
MATHS
(2d^(2)e^(-1))^(3)xx(d^(3)/e)^(-2)=...

`(2d^(2)e^(-1))^(3)xx(d^(3)/e)^(-2)=`

A

`8e^(-2)`

B

`8e^(-3)`

C

`8e^(-1)`

D

`8e^(-4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((2d^{2}e^{-1})^{3} \times (d^{3}/e)^{-2}\), we will follow the properties of exponents step by step. ### Step 1: Rewrite the expression We start with the expression: \[ (2d^{2}e^{-1})^{3} \times (d^{3}/e)^{-2} \] ### Step 2: Apply the power of a product rule Using the property \((a \cdot b)^{n} = a^{n} \cdot b^{n}\), we can rewrite the first part: \[ = 2^{3} \cdot (d^{2})^{3} \cdot (e^{-1})^{3} \times (d^{3})^{-2} \cdot (e^{-1})^{-2} \] ### Step 3: Calculate the individual powers Now we calculate each part: - \(2^{3} = 8\) - \((d^{2})^{3} = d^{6}\) (using \((a^{m})^{n} = a^{m \cdot n}\)) - \((e^{-1})^{3} = e^{-3}\) - \((d^{3})^{-2} = d^{-6}\) - \((e^{-1})^{-2} = e^{2}\) So we can rewrite the expression as: \[ = 8 \cdot d^{6} \cdot e^{-3} \cdot d^{-6} \cdot e^{2} \] ### Step 4: Combine like terms Now we combine the terms with the same base: - For \(d\): \(d^{6} \cdot d^{-6} = d^{6 - 6} = d^{0} = 1\) - For \(e\): \(e^{-3} \cdot e^{2} = e^{-3 + 2} = e^{-1}\) Thus, the expression simplifies to: \[ = 8 \cdot 1 \cdot e^{-1} = 8e^{-1} \] ### Final Result The final result of the expression is: \[ 8e^{-1} \]
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHS

    ALLEN|Exercise Exercise(S-1)|10 Videos
  • BASIC MATHS

    ALLEN|Exercise Do yourself -1 :|4 Videos
  • BASIC MATHS

    ALLEN|Exercise Do yourself -2 :|4 Videos
  • APPLICATION OF DERIVATIVES

    ALLEN|Exercise All Questions|1 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

For all def ne 0, (4d^(3)e^(4)f^(2))/((2de^(3)f)^(2))=

Differentiate (e^(2x)+e^(-2x))/(e^(2x)-e^(-2x)) with respect to 'x'

Evaluate : a. (-1)^(11) b. (-3)^(2)xx(5)^(3) c. 6^(2)xx3^(3) d. (-2)^(3)xx(-5)^(2) e. (-1)^(7)xx2 f. (-1)^(4)xx(-1)^(5) g. 4^(3)xx3^(4) h. (-2)^(5)xx5^(3) i. (-4)^(3)xx(-6)^(3) j. (-1)^(33)xx(-3)^(1) k. ((-1)/(6))^(2) l. ((2)/(11))^(3)

(a)/(b) = (c)/(d) = (e)/(f) = k(a, b, c, d, e, f gt 0) then (A) k = (a + c +e)/(b + d + f) (B) k = (a^(2) + c^(2) +e^(2))/(b^(2) + d^(2) + f^(2)) (C) k = (c^(2)e^(2))/(d^(2)f^(2)) (D) k = ((ace)/(bdf))^((1)/(3))

If int(3x ^(3)-17)e^(2x)dx={Ax^(3)+Bx^(2)+Cx+D}e^(2x)+k then

The sum of the series 1/(2!)-1/(3!)+1/(4!)-... upto infinity is (1) e^(-2) (2) e^(-1) (3) e^(-1//2) (4) e^(1//2)

Which is the correct relationship? (a). E_(1) of H=1//2E_(2) of He^(+)=1//3E_(3) of Li^(2+)=1//4E_(4) of Be^(3+) (b). E_(1)(H)=E_(2)(He^(+))=E_(3)(Li^(2+))=E_(4)(Be^(3+)) (c). E_(1)(H)=2E_(2)(He^(+))=3E_(3)(Li^(2+))=4E_(4)(Be^(3+)) (d). No relation

The degree of the differential equation, e^(((d^3y)/(dx^3))^2)+x(d^2y)/(dx^2)+y=0 is 1 (b) 2 (c) 0 (d) not defined

Let C be the centre, BCB the minor axis and S the focus (ae, 0) for the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1. B ' S is produced to meet the ellipse again in the point P. If CP makes an angle varphi with the positive direction of x-axis then tanvarphi is equal to ((a-e^2)^(3/2))/e (b) ((1-e^2)^(3/2))/(2e) ((1-e^2)^(1/2))/2 (d) ((1-e^2)^(-1/2))/e

The maximum value of x^4e^ (-x^2) is (A) e^2 (B) e^(-2) (C) 12 e^(-2) (D) 4e^(-2)