Home
Class 12
MATHS
If (a^(m))^(n)=a^(m^(n)), then express '...

If `(a^(m))^(n)=a^(m^(n))`, then express 'm' in the terms of n is `(agt0, ane0, mgt1, ngt1)`

A

`n^((1/(n-1)))`

B

`n^((1/(n+1)))`

C

`n^((1/n))`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((a^{m})^{n} = a^{m^{n}}\) for \(m\) in terms of \(n\), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ (a^{m})^{n} = a^{m^{n}} \] Using the property of exponents \((x^{y})^{z} = x^{y \cdot z}\), we can rewrite the left side: \[ a^{m \cdot n} = a^{m^{n}} \] ### Step 2: Set the exponents equal Since the bases are the same (both are \(a\)), we can set the exponents equal to each other: \[ m \cdot n = m^{n} \] ### Step 3: Rearrange the equation We can rearrange this equation to isolate terms involving \(m\): \[ m^{n} - m \cdot n = 0 \] ### Step 4: Factor the equation We can factor out \(m\) from the left-hand side: \[ m(m^{n-1} - n) = 0 \] ### Step 5: Analyze the factors Since \(m > 1\) (as given in the problem), the first factor \(m = 0\) is not possible. Therefore, we must have: \[ m^{n-1} - n = 0 \] ### Step 6: Solve for \(m\) From the equation \(m^{n-1} = n\), we can express \(m\) in terms of \(n\): \[ m = n^{\frac{1}{n-1}} \] ### Conclusion Thus, the expression for \(m\) in terms of \(n\) is: \[ m = n^{\frac{1}{n-1}} \]
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHS

    ALLEN|Exercise Exercise(S-1)|10 Videos
  • BASIC MATHS

    ALLEN|Exercise Do yourself -1 :|4 Videos
  • BASIC MATHS

    ALLEN|Exercise Do yourself -2 :|4 Videos
  • APPLICATION OF DERIVATIVES

    ALLEN|Exercise All Questions|1 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If (a^(m))^(n)=a^(m).a^(n) , find the value of : m(n - 1) - (n - 1)

If log_(a)m = n , express a^(n-1) in terms of a and m.

If x = (sqrt(m + n) + sqrt(m - n))/(sqrt(m + n) - sqrt(m - n)) , express n in the terms of x and m .

If I(m,n)=int_0^1 t^m(1+t)^n.dt , then the expression for I(m,n) in terms of I(m+1,n-1) is:

If I(m,n)=int_0^1x^(m-1)(1-x)^(n-1)dx , then

If mgt0, ngt0 , the definite integral I=int_0^1 x^(m-1)(1-x)^(n-1)dx depends upon the values of m and n is denoted by beta(m,n) , called the beta function.Obviously, beta(n,m)=beta(m,n) .Now answer the question:If int_0^oo x^(m-1)/(1+x)^(m+n)dx=k int_0^oo x^(n-1)/(1+x)^(m+n)dx , then k is equal to (A) m/n (B) 1 (C) n/m (D) none of these

If mgt0, ngt0 , the definite integral I=int_0^1 x^(m-1)(1-x)^(n-1)dx depends upon the values of m and n is denoted by beta(m,n) , called the beta function.Obviously, beta(n,m)=beta(m,n) .Now answer the question:The integral int_0^(pi/2) cos^(2m)theta sin^(2n)theta d theta= (A) 1/2beta(m+1/2,n+1/2) (B) 2beta(2m,2n) (C) beta(2m+1,2n+1) (D) none of these

Statement-1: 1^(3)+3^(3)+5^(3)+7^(3)+...+(2n-1)^(3)ltn^(4),n in N Statement-2: If a_(1),a_(2),a_(3),…,a_(n) are n distinct positive real numbers and mgt1 , then (a_(1)^(m)+a_(2)^(m)+...+a_(n)^(m))/(n)gt((a_(1)+a_(2)+...+a_(b))/(n))^(m)

Let m,n be two positive real numbers and define f(n)=int_(0)^(oo)x^(n-1)e^(-x)dx and g(m,n)=int_(0)^(1)x^(m-1)(1-m)^(n-1)dx . It is known that f(n) for n gt 0 is finite and g(m, n) = g(n, m) for m, n gt 0. int_(0)^(1)x^(m)(log_(e).(1)/(x))dx=

If mgt0, ngt0 , the definite integral I=int_0^1 x^(m-1)(1-x)^(n-1)dx depends upon the values of m and n is denoted by beta(m,n) , called the beta function.Obviously, beta(n,m)=beta(m,n) .Now answer the question:If int_0^2 (8-x^3)^((-1)/3)dx=kbeta(1/3,2/3) , then k equals to (A) 1 (B) 1/2 (C) 1/3 (D) 1/4