Home
Class 12
MATHS
If (5+2sqrt6)^(x^(2)-8)+(5-2sqrt6)^(x^(2...

If `(5+2sqrt6)^(x^(2)-8)+(5-2sqrt6)^(x^(2)-8)=10, x inR`
On the basis of above information, answer the following questions :
Sum of positive solutions is

A

3

B

`3+sqrt7`

C

`2+sqrt5`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( (5 + 2\sqrt{6})^{x^2 - 8} + (5 - 2\sqrt{6})^{x^2 - 8} = 10 \), we can follow these steps: ### Step 1: Let \( y = x^2 - 8 \) We can rewrite the equation as: \[ (5 + 2\sqrt{6})^y + (5 - 2\sqrt{6})^y = 10 \] ### Step 2: Recognize the symmetry Notice that \( 5 - 2\sqrt{6} \) is the reciprocal of \( 5 + 2\sqrt{6} \): \[ 5 - 2\sqrt{6} = \frac{1}{5 + 2\sqrt{6}} \] Thus, we can express the equation in terms of \( a = (5 + 2\sqrt{6})^y \): \[ a + \frac{1}{a} = 10 \] ### Step 3: Multiply through by \( a \) To eliminate the fraction, we multiply the entire equation by \( a \): \[ a^2 + 1 = 10a \] ### Step 4: Rearrange into standard quadratic form Rearranging gives us: \[ a^2 - 10a + 1 = 0 \] ### Step 5: Solve the quadratic equation Using the quadratic formula \( a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ a = \frac{10 \pm \sqrt{(-10)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{10 \pm \sqrt{100 - 4}}{2} = \frac{10 \pm \sqrt{96}}{2} = \frac{10 \pm 4\sqrt{6}}{2} = 5 \pm 2\sqrt{6} \] ### Step 6: Find \( y \) Since \( a = (5 + 2\sqrt{6})^y \), we have two cases: 1. \( (5 + 2\sqrt{6})^y = 5 + 2\sqrt{6} \) 2. \( (5 + 2\sqrt{6})^y = 5 - 2\sqrt{6} \) For the first case: \[ y = 1 \implies x^2 - 8 = 1 \implies x^2 = 9 \implies x = 3 \text{ or } x = -3 \] For the second case: \[ y = -1 \implies x^2 - 8 = -1 \implies x^2 = 7 \implies x = \sqrt{7} \text{ or } x = -\sqrt{7} \] ### Step 7: Identify positive solutions The positive solutions are \( x = 3 \) and \( x = \sqrt{7} \). ### Step 8: Calculate the sum of positive solutions The sum of the positive solutions is: \[ 3 + \sqrt{7} \] Thus, the final answer is: \[ \text{Sum of positive solutions} = 3 + \sqrt{7} \] ---
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHS

    ALLEN|Exercise Do yourself -1 :|4 Videos
  • BASIC MATHS

    ALLEN|Exercise Do yourself -2 :|4 Videos
  • BASIC MATHS

    ALLEN|Exercise Exercise(O-1)|15 Videos
  • APPLICATION OF DERIVATIVES

    ALLEN|Exercise All Questions|1 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If (5+2sqrt6)^(x^(2)-8)+(5-2sqrt6)^(x^(2)-8)=10, x inR On the basis of above information, answer the following questions : Number of solution (s) of the given equation is/ are -

If (5+2sqrt6)^(x^(2)-8)+(5-2sqrt6)^(x^(2)-8)=10, x inR On the basis of above information, answer the following questions : If x in (-3,5) , then number of possible values of x, is-

Solve for x :(5+2sqrt(6))^(x^2-3)+(5-2sqrt(6))^(x^2-3)=10.

Solve sqrt(5x^2-6x+8)-sqrt(5x^2-6x-7)=1.

Solve sqrt(5x^2-6x+8)-sqrt(5x^2-6x-7)=1.

Solve for x : (5+2sqrt(6))^[x^2-3]+(5-2sqrt(6))^[x^2-3]=10

(sqrt(8+2x-x^2)>6-3x)

Comprehension 1 Let a^((log)_b x)=c\ w h e r e\ a ,\ b ,\ c\ &\ x\ are parameters. On the basis of above information, answer the following questions: If a=2\ x=a^((log)_5 25)&\ c=sqrt(2) , then b is- a. 2 b. \ 16 c. \ 12 d. 2

Comprehension 1 Let a^((log)_b x)=c\ w h e r e\ a ,\ b ,\ c\ &\ x\ are parameters. On the basis of above information, answer the following questions: If a=2\ x=a^((log)_5 25)&\ c=sqrt(2) , then b is a. 2 b. \ 16 c. \ 12 d. 2

lim_(xrarr2) (x^(2)-5x+6)/(x^(2)-6x+8)