Home
Class 12
MATHS
If (5+2sqrt6)^(x^(2)-8)+(5-2sqrt6)^(x^(2...

If `(5+2sqrt6)^(x^(2)-8)+(5-2sqrt6)^(x^(2)-8)=10, x inR`
On the basis of above information, answer the following questions :
If `x in (-3,5)`, then number of possible values of x, is-

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((5 + 2\sqrt{6})^{x^2 - 8} + (5 - 2\sqrt{6})^{x^2 - 8} = 10\), we will follow these steps: ### Step 1: Define the Variables Let \(y = x^2 - 8\). Then the equation becomes: \[ (5 + 2\sqrt{6})^y + (5 - 2\sqrt{6})^y = 10 \] ### Step 2: Analyze the Terms Notice that \(5 + 2\sqrt{6}\) and \(5 - 2\sqrt{6}\) are conjugates. We can denote: \[ a = 5 + 2\sqrt{6} \quad \text{and} \quad b = 5 - 2\sqrt{6} \] Thus, the equation can be rewritten as: \[ a^y + b^y = 10 \] ### Step 3: Find the Relationship Between \(a\) and \(b\) Calculate \(ab\): \[ ab = (5 + 2\sqrt{6})(5 - 2\sqrt{6}) = 25 - (2\sqrt{6})^2 = 25 - 24 = 1 \] This means \(b = \frac{1}{a}\). ### Step 4: Substitute \(b\) in the Equation Substituting \(b\) gives: \[ a^y + \left(\frac{1}{a}\right)^y = 10 \] This simplifies to: \[ a^y + \frac{1}{a^y} = 10 \] ### Step 5: Let \(z = a^y\) Then the equation becomes: \[ z + \frac{1}{z} = 10 \] Multiplying through by \(z\) gives: \[ z^2 - 10z + 1 = 0 \] ### Step 6: Solve the Quadratic Equation Using the quadratic formula: \[ z = \frac{10 \pm \sqrt{10^2 - 4 \cdot 1}}{2 \cdot 1} = \frac{10 \pm \sqrt{96}}{2} = \frac{10 \pm 4\sqrt{6}}{2} = 5 \pm 2\sqrt{6} \] ### Step 7: Find \(y\) Since \(z = a^y\), we have two cases: 1. \(a^y = 5 + 2\sqrt{6}\) 2. \(a^y = 5 - 2\sqrt{6}\) For the first case: \[ y = 1 \implies x^2 - 8 = 1 \implies x^2 = 9 \implies x = 3 \text{ or } x = -3 \] For the second case: \[ y = -1 \implies x^2 - 8 = -1 \implies x^2 = 7 \implies x = \sqrt{7} \text{ or } x = -\sqrt{7} \] ### Step 8: Identify Valid Solutions in the Interval Now we need to check which of these solutions lie in the interval \((-3, 5)\): - From \(y = 1\): \(x = 3\) (valid), \(x = -3\) (not valid). - From \(y = -1\): \(x = \sqrt{7} \approx 2.645\) (valid), \(x = -\sqrt{7} \approx -2.645\) (valid). ### Conclusion The valid solutions in the interval \((-3, 5)\) are: - \(x = 3\) - \(x = \sqrt{7}\) - \(x = -\sqrt{7}\) Thus, the total number of possible values of \(x\) is **3**.
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHS

    ALLEN|Exercise Do yourself -1 :|4 Videos
  • BASIC MATHS

    ALLEN|Exercise Do yourself -2 :|4 Videos
  • BASIC MATHS

    ALLEN|Exercise Exercise(O-1)|15 Videos
  • APPLICATION OF DERIVATIVES

    ALLEN|Exercise All Questions|1 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If (5+2sqrt6)^(x^(2)-8)+(5-2sqrt6)^(x^(2)-8)=10, x inR On the basis of above information, answer the following questions : Sum of positive solutions is

If (5+2sqrt6)^(x^(2)-8)+(5-2sqrt6)^(x^(2)-8)=10, x inR On the basis of above information, answer the following questions : Number of solution (s) of the given equation is/ are -

Solve for x :(5+2sqrt(6))^(x^2-3)+(5-2sqrt(6))^(x^2-3)=10.

Solve sqrt(5x^2-6x+8)-sqrt(5x^2-6x-7)=1.

Solve sqrt(5x^2-6x+8)-sqrt(5x^2-6x-7)=1.

Solve for x : (5+2sqrt(6))^[x^2-3]+(5-2sqrt(6))^[x^2-3]=10

If x is an integer satisfying x^(2)-6x+5 le 0 " and " x^(2)-2x gt 0 , then the number of possible values of x, is

(sqrt(8+2x-x^2)>6-3x)

Solve the following inequations. sqrt(-x^(2)+6x-5) gt 8-2x

lim_(xrarr2) (x^(2)-5x+6)/(x^(2)-6x+8)