If `sqrt(9+sqrt48-sqrt32-sqrt24)=sqrta-sqrtb+2`,where `a,b inN`, then find the value of a + b.
Text Solution
AI Generated Solution
The correct Answer is:
To solve the equation \( \sqrt{9 + \sqrt{48} - \sqrt{32} - \sqrt{24}} = \sqrt{a} - \sqrt{b} + 2 \), where \( a, b \in \mathbb{N} \), we will simplify the left-hand side step by step.
### Step 1: Simplify the expression inside the square root
We start with the left-hand side (LHS):
\[
\sqrt{9 + \sqrt{48} - \sqrt{32} - \sqrt{24}}
\]
### Step 2: Simplify the square roots
First, we simplify the square roots:
- \( \sqrt{48} = \sqrt{16 \cdot 3} = 4\sqrt{3} \)
- \( \sqrt{32} = \sqrt{16 \cdot 2} = 4\sqrt{2} \)
- \( \sqrt{24} = \sqrt{16 \cdot 1.5} = 4\sqrt{1.5} = 2\sqrt{6} \)
Now substituting these back into the expression:
\[
\sqrt{9 + 4\sqrt{3} - 4\sqrt{2} - 2\sqrt{6}}
\]
### Step 3: Rewrite 9 as a sum of squares
Notice that \( 9 \) can be rewritten as:
\[
9 = 3^2 + 0^2 + 0^2
\]
### Step 4: Group the terms
We can express the LHS as:
\[
\sqrt{(3 + 2 - \sqrt{2})^2}
\]
where we have:
- \( a = 3 \)
- \( b = 2 \)
### Step 5: Compare with the right-hand side
The right-hand side (RHS) is given as:
\[
\sqrt{a} - \sqrt{b} + 2
\]
From our simplification, we can see that:
\[
\sqrt{3} - \sqrt{2} + 2
\]
### Step 6: Identify \( a \) and \( b \)
From the comparison:
- We have identified \( a = 3 \)
- We have identified \( b = 2 \)
### Step 7: Calculate \( a + b \)
Now, we need to find \( a + b \):
\[
a + b = 3 + 2 = 5
\]
Thus, the final answer is:
\[
\boxed{5}
\]
Topper's Solved these Questions
BASIC MATHS
ALLEN|Exercise Do yourself -2 :|4 Videos
BASIC MATHS
ALLEN|Exercise Exercise(S-1)|10 Videos
APPLICATION OF DERIVATIVES
ALLEN|Exercise All Questions|1 Videos
COMPLEX NUMBERS AND QUADRATIC EQUATIONS
ALLEN|Exercise All Questions|1 Videos
Similar Questions
Explore conceptually related problems
If x=(sqrt3+sqrt2)/(sqrt3-sqrt2)andy=(sqrt3-sqrt2)/(sqrt3+sqrt2) then find the value of x^(2)+y^(2) ?
If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(sqrt(1-x ^(2)))) . (cot ^(-1)""(x )/(sqrt (1-(x ^(2))^(|x|))))dx = (pi^(2)(sqrta-sqrtb))/(sqrtc) where a,b,c in N in their lowest from, then find the value of (a+b+c).
If sqrt (7 sqrt (7 sqrt7 sqrt7 sqrt7)) = 7 ^(x) then find the value of x
If x = 13 + 2sqrt(42) , then sqrt(x) + (1)/(sqrt(x)) is equal to asqrt(b) then find the value of b - a ?
If x= ( sqrt5- sqrt3)/ ( sqrt5+ sqrt3) and y= ( sqrt5+ sqrt3)/( sqrt5- sqrt3) find the value of x^(2) + y ^(2)
If the value of the expression tan((1)/(2)cos^(-1).(2)/(sqrt5)) is in the form of a+sqrtb where a, b in Z , then the value of (a+b)/(b) is
If the value of the expression sin 25^@* sin 35^@* sin 85^@ can be expressed as (sqrta+sqrt b)/c where a,b,c N and are in their lowest form, find the value of (a+b+c)
If the value of the expression sin 25^@* sin 35^@* sin 85^@ can be expressed as (sqrta+sqrt b)/c where a,b,c N and are in their lowest form, find the value of (a+b+c)
If 4/(2+sqrt3+sqrt7)=sqrta+sqrtb-sqrtc ,then which of the following can be true -
If a/sqrt(b c)-2=sqrt(b/c)+sqrt(c/b), where a , b , c >0, then the family of lines sqrt(a)x+sqrt(b)y+sqrt(c)=0 passes though the fixed point given by (a) (1,1) (b) (1,-2) (c) (-1,2) (d) (-1,1)