Home
Class 12
MATHS
If sqrt(9+sqrt48-sqrt32-sqrt24)=sqrta-sq...

If `sqrt(9+sqrt48-sqrt32-sqrt24)=sqrta-sqrtb+2`,where `a,b inN`, then find the value of a + b.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{9 + \sqrt{48} - \sqrt{32} - \sqrt{24}} = \sqrt{a} - \sqrt{b} + 2 \), where \( a, b \in \mathbb{N} \), we will simplify the left-hand side step by step. ### Step 1: Simplify the expression inside the square root We start with the left-hand side (LHS): \[ \sqrt{9 + \sqrt{48} - \sqrt{32} - \sqrt{24}} \] ### Step 2: Simplify the square roots First, we simplify the square roots: - \( \sqrt{48} = \sqrt{16 \cdot 3} = 4\sqrt{3} \) - \( \sqrt{32} = \sqrt{16 \cdot 2} = 4\sqrt{2} \) - \( \sqrt{24} = \sqrt{16 \cdot 1.5} = 4\sqrt{1.5} = 2\sqrt{6} \) Now substituting these back into the expression: \[ \sqrt{9 + 4\sqrt{3} - 4\sqrt{2} - 2\sqrt{6}} \] ### Step 3: Rewrite 9 as a sum of squares Notice that \( 9 \) can be rewritten as: \[ 9 = 3^2 + 0^2 + 0^2 \] ### Step 4: Group the terms We can express the LHS as: \[ \sqrt{(3 + 2 - \sqrt{2})^2} \] where we have: - \( a = 3 \) - \( b = 2 \) ### Step 5: Compare with the right-hand side The right-hand side (RHS) is given as: \[ \sqrt{a} - \sqrt{b} + 2 \] From our simplification, we can see that: \[ \sqrt{3} - \sqrt{2} + 2 \] ### Step 6: Identify \( a \) and \( b \) From the comparison: - We have identified \( a = 3 \) - We have identified \( b = 2 \) ### Step 7: Calculate \( a + b \) Now, we need to find \( a + b \): \[ a + b = 3 + 2 = 5 \] Thus, the final answer is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHS

    ALLEN|Exercise Do yourself -2 :|4 Videos
  • BASIC MATHS

    ALLEN|Exercise Exercise(S-1)|10 Videos
  • APPLICATION OF DERIVATIVES

    ALLEN|Exercise All Questions|1 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If x=(sqrt3+sqrt2)/(sqrt3-sqrt2)andy=(sqrt3-sqrt2)/(sqrt3+sqrt2) then find the value of x^(2)+y^(2) ?

If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(sqrt(1-x ^(2)))) . (cot ^(-1)""(x )/(sqrt (1-(x ^(2))^(|x|))))dx = (pi^(2)(sqrta-sqrtb))/(sqrtc) where a,b,c in N in their lowest from, then find the value of (a+b+c).

If sqrt (7 sqrt (7 sqrt7 sqrt7 sqrt7)) = 7 ^(x) then find the value of x

If x = 13 + 2sqrt(42) , then sqrt(x) + (1)/(sqrt(x)) is equal to asqrt(b) then find the value of b - a ?

If x= ( sqrt5- sqrt3)/ ( sqrt5+ sqrt3) and y= ( sqrt5+ sqrt3)/( sqrt5- sqrt3) find the value of x^(2) + y ^(2)

If the value of the expression tan((1)/(2)cos^(-1).(2)/(sqrt5)) is in the form of a+sqrtb where a, b in Z , then the value of (a+b)/(b) is

If the value of the expression sin 25^@* sin 35^@* sin 85^@ can be expressed as (sqrta+sqrt b)/c where a,b,c N and are in their lowest form, find the value of (a+b+c)

If the value of the expression sin 25^@* sin 35^@* sin 85^@ can be expressed as (sqrta+sqrt b)/c where a,b,c N and are in their lowest form, find the value of (a+b+c)

If 4/(2+sqrt3+sqrt7)=sqrta+sqrtb-sqrtc ,then which of the following can be true -

If a/sqrt(b c)-2=sqrt(b/c)+sqrt(c/b), where a , b , c >0, then the family of lines sqrt(a)x+sqrt(b)y+sqrt(c)=0 passes though the fixed point given by (a) (1,1) (b) (1,-2) (c) (-1,2) (d) (-1,1)