Home
Class 12
MATHS
If sintheta+sin^2theta=1, then prove tha...

If `sintheta+sin^2theta=1,` then prove that `cos^(12)theta+3cos^(10)theta+3cos^8theta+cos^6theta-1=0` Given that `sintheta=1-sin^2theta=1-sin^2theta=cos^2theta`

Text Solution

AI Generated Solution

To prove that \( \cos^{12}\theta + 3\cos^{10}\theta + 3\cos^8\theta + \cos^6\theta - 1 = 0 \) given that \( \sin\theta + \sin^2\theta = 1 \), we can follow these steps: ### Step 1: Express \(\sin\theta\) in terms of \(\cos^2\theta\) From the equation \( \sin\theta + \sin^2\theta = 1 \), we can rearrange it as: \[ \sin^2\theta = 1 - \sin\theta \] Let \( x = \sin\theta \). Then we have: ...
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise Yourself|12 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-01|17 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

If sintheta+sin^(2)theta=1 , then prove that cos^(12)theta+3cos^(10)theta+3cos^(8)theta+cos^(6)theta-1=0

Prove that sin^6theta+cos^6theta=1-3sin^2thetacos^2theta

If sintheta+sin^(2)theta=1 , then find value of cos^(12)theta+3cos^(10)theta+3cos^(8)theta+cos^(6)theta-1

If sintheta+sin^2theta=1 , prove that cos^2theta+cos^4theta=1

If sintheta+sin^2theta+sin^3theta=1, then prove that cos^6theta-4cos^4theta+8cos^2theta=4

If sintheta+sin^2theta=1 ,find the value of cos^(12)theta+3cos^(10)theta+3cos^8theta+cos^6theta+2cos^4theta+2cos^2theta-2

Prove that cos^6 theta+ sin^6 theta= 1-3sin^2 theta cos^2 theta

Prove that : cos^3 2theta+3cos2theta=4(cos^6theta-sin^6 theta)

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

If sintheta+sin^(2)theta = 1 then cos^(2)theta+cos^(4)theta is equal to :