Home
Class 12
MATHS
Find the value of 6(sin^6theta+cos^6th...

Find the value of `6(sin^6theta+cos^6theta)-9(sin^4theta+cos^4theta)+4`

A

0

B

1

C

`-2`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`4[(sin^(2)theta+cos^(2)theta)^(3)-3sin^(2)thetacos^(2)theta(sin^(2)theta+cos^(2)theta)]-6[(sin^(2)theta+cos^(2)theta)^(2)-2sin^(2)thetacos^(2)theta)]`
`=4[1-3sin^(2)thetacos^(2)theta]-[1-2sin^(2)thetacos^(2)theta]`
`=4-12sin^(2)thetacos^(2)theta-6+12sin^(2)thetacos ^(2)theta=-2`
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise Yourself|12 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-01|17 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

The value for 2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta) +1 is

If cot theta = (3)/(4) find the value of : ( sin theta- cos theta)/(sin theta+cos theta)

2(sin^(6) theta + cos^(6)theta) - 3(sin^(4)theta + cos^(4)theta)+ 1 = 0

4(sin^(6)theta+cos^(6)theta)-6(sin^(4)theta+cos^(4)theta) is equal to

Prove that sin^6theta+cos^6theta=1-3sin^2thetacos^2theta

Which of the following values of a and b will make a(sin^(6)theta+cos^(6)theta)-b(sin^(4)theta+cos^(4)theta) independent of theta ?

Prove the following identities: 2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta)+1=0 sin^6theta+cos^6theta+3sin^2thetacos^2theta=1 (sin^8theta-cos^8theta)=(sin^2theta-cos^2theta)(1-2s in^2thetacos^2theta)

The value of the expression cos^6theta+sin^6theta+3sin^2thetacos^2theta=

If 4 tan theta =3 evaluate (4sin theta - cos theta+1)/(4sin theta+cos theta-1)

cos^(4)theta-sin^(4)theta is equal to