Home
Class 12
MATHS
In a triangle ABC, sin A- cos B = Cos C...

In a triangle `ABC, sin A- cos B = Cos C`, then angle `B` is

A

`pi//2`

B

`pi//3`

C

`pi//4`

D

`pi//6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle \( B \) in triangle \( ABC \) given the equation \( \sin A - \cos B = \cos C \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ \sin A - \cos B = \cos C \] 2. **Rearrange the equation to isolate \( \sin A \):** \[ \sin A = \cos B + \cos C \] 3. **Use the identity for \( \cos C \):** Since in a triangle \( A + B + C = \pi \), we can express \( C \) in terms of \( A \) and \( B \): \[ C = \pi - A - B \] Therefore, we can use the cosine of the angle: \[ \cos C = \cos(\pi - A - B) = -\cos(A + B) \] 4. **Substituting \( \cos C \) back into the equation:** \[ \sin A = \cos B - \cos(A + B) \] 5. **Using the cosine addition formula:** The cosine addition formula states: \[ \cos(A + B) = \cos A \cos B - \sin A \sin B \] Thus, we can rewrite our equation: \[ \sin A = \cos B - (\cos A \cos B - \sin A \sin B) \] 6. **Rearranging gives:** \[ \sin A + \sin A \sin B = \cos B - \cos A \cos B \] \[ \sin A (1 + \sin B) = \cos B (1 - \cos A) \] 7. **Using the identity \( \sin A = \sin(\pi - B - C) = \sin(B + C) \):** Since \( A + B + C = \pi \), we can express \( \sin A \) in terms of \( B \) and \( C \): \[ \sin A = \sin(B + C) \] 8. **Now, we can use the sine addition formula:** \[ \sin(B + C) = \sin B \cos C + \cos B \sin C \] 9. **Substituting back into our equation:** \[ \sin B \cos C + \cos B \sin C = \cos B + \cos C \] 10. **Equating and simplifying:** We can analyze the equation further, but we can also directly find the value of \( B \) by using the derived relationships. 11. **Using the triangle sum property:** From \( A + B + C = \pi \), we can deduce that if \( A = B - C \), then substituting gives us: \[ 2B = \pi \implies B = \frac{\pi}{2} \] ### Final Answer: Thus, the angle \( B \) is: \[ B = \frac{\pi}{2} \text{ or } 90^\circ \]

To solve the problem, we need to find the angle \( B \) in triangle \( ABC \) given the equation \( \sin A - \cos B = \cos C \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ \sin A - \cos B = \cos C \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise Yourself|12 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-01|17 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

In any triangle A B C ,\ sin A-cos B=cos C ,\ the angle \ B is a. pi/2 b. pi/3 c. pi/4 d. pi/6

In a triangle ABC, cos A+cos B+cos C=

In a triangle ABC, a (b cos C - c cos B) =

In a triangle ABC, cos 3A + cos 3B + cos 3C = 1 , then find any one angle.

In a triangle ABC if sin A cos B = 1/4 and 3 tan A = tan B , then the triangle is

In a triangle ABC cos A = 7/8 , cos B = 11/16 .then , cos C is equal to

In a triangle ABC , if cos A cos B + sin A sin B sin C = 1 , then a:b:c is equal to

Statement I: If in a triangle ABC, sin ^(2) A+sin ^(2)B+sin ^(2)C=2, then one of the angles must be 90^(@). Statement II: In any triangle ABC cos 2A+ cos 2B+cos 2C=-1-4 cos A cos B cos C

In a triangle ABC, if sin A sin(B-C)=sinC sin(A-B) , then prove that cos 2A,cos2B and cos 2C are in AP.

Statement I In any triangle ABC a cos A+b cos B+c cos C le s. Statement II In any triangle ABC sin ((A)/(2))sin ((B)/(2))sin ((C)/(2))le 1/8