Home
Class 12
MATHS
If A,B,C and D are angles of quadrilater...

If A,B,C and D are angles of quadrilateral and `sin(A)/(2)sin(B)/(2)sin(C)/(2)sin(D)/(2)=(1)/(4)`, prove that A=B=C=D=`pi//2`

Text Solution

Verified by Experts

`(2sin(A)/(2)sin(B)/(2))(sin(C)/(2)sin(D)/(2))=1`
`rArr{cos((A-B)/(2))-cos((A+B)/(2))}{cos((C-D)/(2))-cos((C+D)/(2))}=1`
Since `A +B=2pi-(C+D)`, the above equation becomes.
`rArr{cos((A-B)/(2))-cos((A+B)/(2))}{cos((C-D)/(2))+cos((A+B)/(2))}=1`
`rArr((A+B)/(2))-cos((A+B)/(2)){cos((A-B)/(2))-cos((C-D)/(2))}+1-cos((A-B)/(2))cos((C-D)/(2))=0`
This is a quadratic equation is `cos((A+B)/(2))` which has real roots.
`rArr{cos((A-B)/(2))-cos((C-D)/(2))}^(2)-4{1-cos((A-B)/(2))cos((C-D)/(2))}ge0`
`(cos(A-B)/(2)+cos(C-D)/(2))^(2)ge4`
`rArrcos(A-B)/(2)+cos(C-D)/(2)ge2`, now both `cos(A-B)/(2)` and `cos(C-D)/(2)le1` ltbr. `rArrcos(A-B)/(2)=1 &cos(C-D)/(2)=1`
`rArr(A-B)/(2)=0=(C-D)/(2)`
`rArrA=B,C=D`.
Similarly `A=C,B=DrArrA=B=C=D=pi//2`
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise Yourself|12 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-01|17 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

If A,B,C and D are angles of quadrilateral and sin(A)/(2)sin(B)/(2)sin(C)/(2)sin(D)/(2)=(1)/(16) , prove that A=B=C=D=pi/2

If A, B, C are the angles of a triangle such that sin^(2)A+sin^(2)B=sin^(2)C , then

If A,B,C,D are angles of a quadrilateral, then sin A + sin (B+ C + D) = (i) 0 (ii) 1 (iii) 2 (iv) None of these

If A,B,C,D are the angles of a quadrilateral, prove that "cos"1/2(A+B)+"cos"1/2(C+D)=0 .

If A,B,C are angles of a triangle, then 2sin(A/2)cosec (B/2)sin(C/2)-sinAcot(B/2)-cosA is (a)independent of A,B,C (b) function of A,B (c)function of C (d) none of these

In a triangle ABC sin(B+2C)+sin(C+2A)+sin(A+2B)=4sin((B-C)/2)sin((C-A)/2)sin((A-B)/2)

If A,B,C be the angles of a triangle, prove that (sin(B+C)+sin(C+A)+sin(A+B))/(sin(pi+A)+sin(3pi+B)+sin(5pi+C))=-1

For any triangle ABC, prove that sin(B-C)/sin(B+C)=(b^2-c^2)/(a^2)

If a,b,c are in HP, then prove that sin ^(2) ""(A)/(2), sin ^(2) ""(B)/(2), sin ^(2) ""(C )/(2) are also in HP.

In DeltaABC, prove that: a) sin(A/2)+sin(B/2) +sin(C/2)= 1+4sin((pi-A)/4)sin((pi-B)/4).sin((pi-C)/4)