Home
Class 12
MATHS
If a(1),a(2),….a(n) are in arthimatic pr...

If `a_(1),a_(2),….a_(n)` are in arthimatic progression, where `a_(i)gt0` for all I, then show that
`1/(sqrt(a_(1))+sqrt(a_(2)))+1/(sqrt(a_(2))+sqrt(a_(3)))+…+1/(sqrt(a_(n-1))+sqrt(a_(n)))`
`(n-1)/(sqrt(a_(1))+sqrt(a_(n)))`

Text Solution

Verified by Experts

L.H.S. `= (1)/(sqrt(a_(1)) + sqrt(a_(2))) + (1)/(sqrt(a_(2)) + sqrt(a_(3))) + ....+ (1)/(sqrt(a_(n - 1)) + sqrt(a_(n)))`
`= (1)/(sqrt(a_(2)) + sqrt(a_(1))) + (1)/(sqrt(a_(3)) + sqrt(a_(2))) + .... + (1)/(sqrt(a_(n)) + sqrt(a_(n - 1)))`
`=(sqrt(a_(2)) - sqrt(a_(1)))/((a_(2) - a_(1))) + (sqrt(a_(3)) - sqrt(a_(2)))/((a_(3) - a_(2))) + ... + (sqrt(a_(n))- sqrt(a_(n - 1)))/(a_(n ) - a_(n - 1))`
Let 'd' is the common difference of this A.P.
then `a_(2) - a_(1) = a_(3) - a_(2) = ....... = a_(n) - a_(n -1) = d`
Now L.H.S.
`= (1)/(d) {sqrt(a_(2)) - sqrt(a_(1)) + sqrt(a_(3)) - sqrt(a_(2)) + .... + sqrt(a_(n - 1)) - sqrt(a_(n - 2)) + sqrt(a_(n - 1))} = (1)/(d) {sqrt(a_(n)) - sqrt(a_(1))}`
`= (a_(n) - a_(n))/(d(sqrt(a_(n)) + sqrt(a_(1)))) = (a_(1) + (n - 1) d- a_(1))/(d(sqrt(a_(n)) + sqrt(a_(1)))) = (1)/(d) ((n - 1)d)/(d(sqrt(a_(n)) + sqrt(a_(1)))) = (n - 1)/(sqrt(a_(n)) + sqrt(a_(1))) =` R.H.S
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Do yourself|3 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Do yourself 2|2 Videos
  • RACE

    ALLEN|Exercise Race 21|14 Videos
  • TEST PAPER

    ALLEN|Exercise CHEMISTRY SECTION-II|3 Videos

Similar Questions

Explore conceptually related problems

If a_(1),a_(2),a_(3),"….",a_(n) are in AP, where a_(i)gt0 for all I, the value of (1)/(sqrta_(1)+sqrta_(2))+(1)/(sqrta_(2)+sqrta_(3))+"....."+(1)/(sqrta_(n-1)+sqrta_(n)) is

If a_(1), a_(2),….,a_(n) are n(gt1) real numbers, then

If A_(1), A_(2),..,A_(n) are any n events, then

If a_(1)=5 and a_(n)=1+sqrt(a_(n-1)), find a_(3) .

If a_(1),a_(2),a_(3),…a_(n+1) are in arithmetic progression, then sum_(k=0)^(n) .^(n)C_(k.a_(k+1) is equal to (a) 2^(n)(a_(1)+a_(n+1)) (b) 2^(n-1)(a_(1)+a_(n+1)) (c) 2^(n+1)(a_(1)+a_(n+1)) (d) (a_(1)+a_(n+1))

If a_(1)gt0 for all i=1,2,…..,n . Then, the least value of (a_(1)+a_(2)+……+a_(n))((1)/(a_(1))+(1)/(a_(2))+…+(1)/(a_(n))) , is

If a_(1), a_(2), a_(3),...., a_(n) is an A.P. with common difference d, then prove that tan[tan^(-1) ((d)/(1 + a_(1) a_(2))) + tan^(-1) ((d)/(1 + a_(2) a_(3))) + ...+ tan^(-1) ((d)/(1 + a_( - 1)a_(n)))] = ((n -1)d)/(1 + a_(1) a_(n))

If a_(1), a_(2), . . . , a_(n) is a sequence of non-zero number which are in A.P., show that (1)/(a_(1)a_(n))+(1)/(a_(2)a_(n-1))+. . . + (1)/(a_(n)a_(1))= (2)/(a_(1) + a_(n)) [(1)/(a_(1))+(1)/(a_(2))+. . . +(1)/(a_(n))]

If a_(i) gt 0 AA I in N such that prod_(i=1)^(n) a_(i) = 1 , then prove that (1 + a_(1)) (1 + a_(2)) (1 + a_(3)) .... (1 + a_(n)) ge 2^(n)

If a_(i) gt 0 (i = 1,2,3,….n) prove that sum_(1 le i le j le n) sqrt(a_(i)a_(j)) le (n - 1)/(2) (a_(1) + a_(2) + …. + a_(n))