Home
Class 12
MATHS
If a(i) gt 0 AA I in N such that prod(i=...

If `a_(i) gt 0 AA I in N` such that `prod_(i=1)^(n) a_(i) = 1`, then prove that `(1 + a_(1)) (1 + a_(2)) (1 + a_(3)) .... (1 + a_(n)) ge 2^(n)`

Text Solution

AI Generated Solution

To prove that \((1 + a_1)(1 + a_2)(1 + a_3) \ldots (1 + a_n) \geq 2^n\) given that \(a_i > 0\) for all \(i \in \mathbb{N}\) and \(\prod_{i=1}^{n} a_i = 1\), we can use the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-Step Solution: 1. **Understanding the AM-GM Inequality**: The AM-GM inequality states that for any non-negative real numbers \(x_1, x_2, \ldots, x_n\): \[ \frac{x_1 + x_2 + \ldots + x_n}{n} \geq \sqrt[n]{x_1 x_2 \ldots x_n} ...
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Do yourself|3 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Do yourself 2|2 Videos
  • RACE

    ALLEN|Exercise Race 21|14 Videos
  • TEST PAPER

    ALLEN|Exercise CHEMISTRY SECTION-II|3 Videos

Similar Questions

Explore conceptually related problems

If a_(i)gt0 for i u=1, 2, 3, … ,n and a_(1)a_(2)…a_(n)=1, then the minimum value of (1+a_(1))(1+a_(2))…(1+a_(n)) , is

If a_(1), a_(2), a_(3).... A_(n) in R^(+) and a_(1).a_(2).a_(3).... A_(n) = 1 , then minimum value of (1 + a_(1) + a_(1)^(2)) (a + a_(2) + a_(2)^(2)) (1 + a_(3) + a_(3)^(2))..... (1 + a_(n) + a_(n)^(2)) is equal to

Let (1 + x)^(n) = sum_(r=0)^(n) a_(r) x^(r) . Then ( a+ (a_(1))/(a_(0))) (1 + (a_(2))/(a_(1)))…(1 + (a_(n))/(a_(n-1))) is equal to

Find a_(1) and a_(9) if a_(n) is given by a_(n) = (n^(2))/(n+1)

If a_(i) gt 0 (i = 1,2,3,….n) prove that sum_(1 le i le j le n) sqrt(a_(i)a_(j)) le (n - 1)/(2) (a_(1) + a_(2) + …. + a_(n))

If a_(1)=1,a_(n+1)=(1)/(n+1)a_(n),a ge1 , then prove by induction that a_(n+1)=(1)/((n+1)!)n in N .

If a_(n) gt a_(n-1) gt …. gt a_(2) gt a_(1) gt 1 , then the value of "log"_(a_(1))"log"_(a_(2)) "log"_(a_(3))…."log"_(a_(n)) is equal to

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

If a_(1), a_(2), a_(3),...., a_(n) is an A.P. with common difference d, then prove that tan[tan^(-1) ((d)/(1 + a_(1) a_(2))) + tan^(-1) ((d)/(1 + a_(2) a_(3))) + ...+ tan^(-1) ((d)/(1 + a_( - 1)a_(n)))] = ((n -1)d)/(1 + a_(1) a_(n))

If a_(1),a_(2),a_(3),".....",a_(n) are in HP, than prove that a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+"....."+a_(n-1)a_(n)=(n-1)a_(1)a_(n)