Home
Class 12
MATHS
If underset(r=1)overset(n)SigmaTr=n/8(n+...

If `underset(r=1)overset(n)SigmaT_r=n/8(n+1)(n+2)(n+3)` then find `underset(r=1)overset(n)Sigma1/T_r`

Text Solution

Verified by Experts

`:. T_(n) = S_(n) - S_(n - 1)`
`=underset(r = 1)overset(n)sum T_(r) - underset(r = 1)overset(n -1)sum T_(r) = (n (n + 1) (n + 2) (n + 3))/(8) - ((n - 1) n (n + 1) (n + 2))/(8) = (n(n + 1) (n + 2))/(8) [(n + 3) - (n - 1)]`
`T_(n) = (n (n + 1) (n + 2))/(8) (4) = (n(n + 1) (n + 2))/(2)`
`rArr (1)/(T_(n)) = (2)/(n (n + 1) (n + 2)) = ((n + 2) - n)/(n(n + 1) (n + 2)) = (1)/(n(n + 1)) - (1)/((n + 1)(n + 2))`...(i)
Let `V_(n) = (1)/(n (n + 1))`
`:. (1)/(T_(n)) = V_(n) - V_(n + 1)`
Putting `n = 1, 2, 3, ... n`
`rArr (1)/(T_(1)) + (1)/(T_(2)) + (1)/(T_(3)) + ... + (1)/(T_(n)) = (V_(1) - V_(n + 1)) rArr underset(r = 1)overset(n)sum (1)/(T_(r)) = (n^(2) + 3n)/(2(n + 1) (n + 2))`
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Do yourself|3 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Do yourself 2|2 Videos
  • RACE

    ALLEN|Exercise Race 21|14 Videos
  • TEST PAPER

    ALLEN|Exercise CHEMISTRY SECTION-II|3 Videos

Similar Questions

Explore conceptually related problems

If Sigma_(r=1)^(n) T_r=n/8(n+1)(n+2)(n+3) then find Sigma_(r=1)^(n) 1/T_r

If S_(n) = underset (r=0) overset( n) sum (1) /(""^(n) C_(r)) and T_(n) = underset(r=0) overset(n) sum (r )/(""^(n) C_(r)) then (t_(n))/(s_(n)) = ?

If sum_(r=1)^n t_r=n/8(n+1)(n+2)(n+3), then find sum_(r=1)^n1/(t_r)dot

If sum _(r =1) ^(n ) T _(r) = (n +1) ( n +2) ( n +3) then find sum _( r =1) ^(n) (1)/(T _(r))

underset(r=1)overset(n-1)(sum)cos^(2)""(rpi)/(n) is equal to

The value of cot (underset(n=1)overset(23)sum cot^(-1) (1 + underset(k=1)overset(n)sum 2k)) is

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to

The value of (.^(n)C_(0))/(n)+(.^(n)C_(1))/(n+1)+(.^(n)C_(2))/(n+2)+"..."+(.^(n)C_(n))/(2n) (a) underset(0)overset(1)intx^(n-1)(1+x)^(n)dx (b) underset(1)overset(2)intx^(n)(x-1)^(n-1)dx (c) underset(1)overset(2)int(1+x)^(n)dx (d) underset(0)overset(1)int(1-x)^(n)x^(n-1)dx

If sum_(r=1)^(n) T_(r)=(n(n+1)(n+2)(n+3))/(8) , then lim_(ntooo) sum_(r=1)^(n) (1)/(T_(r))=

If (1-x^(3))^(n)=underset(r=0)overset(n)(sum)a_(r)x^(r)(1-x)^(3n-2r) , then the value of a_(r) , where n in N is