Home
Class 12
MATHS
If 3^(2sin2x -1), 14, 3^(4 -2sin2x) form...

If `3^(2sin2x -1), 14, 3^(4 -2sin2x)` form first three terms of an A.P then find the value of `1+ sin2x+ sin^2(2x)+........`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \(1 + \sin 2x + \sin^2(2x) + \ldots\) given that the terms \(3^{2\sin 2x - 1}\), \(14\), and \(3^{4 - 2\sin 2x}\) form an arithmetic progression (A.P.). ### Step-by-Step Solution: 1. **Understanding the A.P. Condition**: Since the three terms form an A.P., the middle term is the average of the other two terms. Therefore, we can write: \[ 14 = \frac{3^{2\sin 2x - 1} + 3^{4 - 2\sin 2x}}{2} \] Multiplying both sides by 2 gives: \[ 28 = 3^{2\sin 2x - 1} + 3^{4 - 2\sin 2x} \] 2. **Rewriting the Exponential Terms**: We can express the terms in a more manageable form: Let \(y = 2\sin 2x\). Then, we can rewrite the equation as: \[ 28 = 3^{y - 1} + 3^{4 - y} \] This simplifies to: \[ 28 = \frac{3^y}{3} + \frac{81}{3^y} \] Multiplying through by 3 gives: \[ 84 = 3^y + \frac{81}{3^y} \] 3. **Multiplying by \(3^y\)**: To eliminate the fraction, we multiply through by \(3^y\): \[ 84 \cdot 3^y = 3^{2y} + 81 \] Rearranging gives us a quadratic equation: \[ 3^{2y} - 84 \cdot 3^y + 81 = 0 \] 4. **Letting \(z = 3^y\)**: Substituting \(z = 3^y\), we have: \[ z^2 - 84z + 81 = 0 \] 5. **Solving the Quadratic Equation**: Using the quadratic formula \(z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): \[ z = \frac{84 \pm \sqrt{84^2 - 4 \cdot 1 \cdot 81}}{2 \cdot 1} \] Calculating the discriminant: \[ 84^2 = 7056, \quad 4 \cdot 81 = 324 \quad \Rightarrow \quad 7056 - 324 = 6732 \] Thus: \[ z = \frac{84 \pm \sqrt{6732}}{2} \] 6. **Finding Roots**: We can approximate \(\sqrt{6732} \approx 82\) (since \(82^2 = 6724\)), so: \[ z \approx \frac{84 \pm 82}{2} \] This gives us two possible values: \[ z_1 \approx 83, \quad z_2 \approx 1 \] 7. **Finding \( \sin 2x \)**: Since \(z = 3^{2\sin 2x}\), we can find \(2\sin 2x\): - If \(z = 83\), then \(2\sin 2x = \log_3(83)\) (not useful as \(\sin\) cannot exceed 1). - If \(z = 1\), then \(2\sin 2x = 0\) which gives \(\sin 2x = 0\). 8. **Calculating the Infinite Series**: Now we need to evaluate: \[ 1 + \sin 2x + \sin^2(2x) + \ldots \] This is a geometric series with first term \(a = 1\) and common ratio \(r = \sin 2x\). The sum of an infinite geometric series is given by: \[ S = \frac{a}{1 - r} \] Here, \(a = 1\) and \(r = \sin 2x = 0\): \[ S = \frac{1}{1 - 0} = 1 \] ### Final Answer: Thus, the value of \(1 + \sin 2x + \sin^2(2x) + \ldots\) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise (JM)|20 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise (JA)|12 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise S-1|16 Videos
  • RACE

    ALLEN|Exercise Race 21|14 Videos
  • TEST PAPER

    ALLEN|Exercise CHEMISTRY SECTION-II|3 Videos

Similar Questions

Explore conceptually related problems

If (x + 1), 3x and (4x + 2) are first three terms of an A.P. then its 5^(th) term is

The numbers 3^(2sin2alpha-1),14and3^(4-2sin2alpha) form first three terms of A.P., its fifth term is

If tan x =1(1)/3 , find the value of : 4 sin^2x -3 cos^2x +2

Evaluate: int1/(sin^2x+sin2x)dx

Evaluate: int1/(sin^2x+sin2x)\ dx

If sin^-1x+sin^-1y+sin^-1z=(3pi)/2 , then find the value of x^2+y^2+z^2

If "sin" 2x, (1)/(2) " and cos" 2x are in A.P., then the general values of x are given by

If sin x_(1)+sin x_(2) + sin x_(3)+...+sin x_(2008)=2008 then find the value of sin^(2008) x_( 1)+sin^(2008)x_(2) + sin^(2008)x_(3)+...+sin^(2008)x_(2008) .

If sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then find the value of x^2+y^2+z^2

If sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then find the value of x^2+y^2+z^2