Home
Class 12
MATHS
In the equadratic equation A(sqrt3-sqrt2...

In the equadratic equation `A(sqrt3-sqrt2)x^2+B/(sqrt3+sqrt2) x+C=0` with `alpha, beta` as its roots. If `A=(49+20sqrt6)^(1/4)`; B=sum of the infinite G.P as `8sqrt3+(8sqrt6)/sqrt3+(16)/sqrt3+.....oo and |alpha-beta|=(6sqrt6)^k` where `k=log_6 10-2 log_6 sqrt5+log_6 sqrt((log_6 18 + log_6 72)),` then find the value of C.

Text Solution

Verified by Experts

The correct Answer is:
128
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise (JM)|20 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise (JA)|12 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise S-1|16 Videos
  • RACE

    ALLEN|Exercise Race 21|14 Videos
  • TEST PAPER

    ALLEN|Exercise CHEMISTRY SECTION-II|3 Videos

Similar Questions

Explore conceptually related problems

Evaluate (sqrt(3)-sqrt(2))^6+(sqrt(3)+sqrt(2))^6dot

Evaluate (sqrt(3)+sqrt(2))^6-(sqrt(3)-sqrt(2))^6dot

(sqrt(6+2sqrt(5)))(sqrt(6-2sqrt(5)))

2/sqrt6 xx 3/sqrt6 + 2/6

If log_(x)log_(18)(sqrt(2)+sqrt(8))=(1)/(3) , then the value of 32x=

The sum of 10 terms of the series sqrt2 + sqrt6 + sqrt18 +... is

Evaluate the following: \ (sqrt(3)+sqrt(2))^6-(sqrt(3)-sqrt(2))^6

If a = sqrt3, b = (1)/(2) (sqrt6 + sqrt2), and c = sqrt2 , then find angle A