Home
Class 12
PHYSICS
If vec(A)=2hati+hatj+hatk " and " vecB=1...

If `vec(A)=2hati+hatj+hatk " and " vecB=10hati+5hatj+5hatk`, if the magnitude of component of `(vec(B)-vec(A))` along `vec(A)` is `4sqrt(x)`. Then x will be .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) given the vectors \( \vec{A} \) and \( \vec{B} \), and the condition regarding the magnitude of the component of \( \vec{B} - \vec{A} \) along \( \vec{A} \). ### Step-by-step Solution: 1. **Define the vectors**: \[ \vec{A} = 2\hat{i} + \hat{j} + \hat{k} \] \[ \vec{B} = 10\hat{i} + 5\hat{j} + 5\hat{k} \] 2. **Calculate \( \vec{B} - \vec{A} \)**: \[ \vec{B} - \vec{A} = (10\hat{i} + 5\hat{j} + 5\hat{k}) - (2\hat{i} + \hat{j} + \hat{k}) \] \[ = (10 - 2)\hat{i} + (5 - 1)\hat{j} + (5 - 1)\hat{k} \] \[ = 8\hat{i} + 4\hat{j} + 4\hat{k} \] 3. **Factor out the common term**: \[ \vec{B} - \vec{A} = 4(2\hat{i} + \hat{j} + \hat{k}) \] 4. **Let \( \vec{R} = \vec{B} - \vec{A} = 4(2\hat{i} + \hat{j} + \hat{k}) \)**. 5. **Find the magnitude of \( \vec{A} \)**: \[ |\vec{A}| = \sqrt{(2)^2 + (1)^2 + (1)^2} = \sqrt{4 + 1 + 1} = \sqrt{6} \] 6. **Calculate the dot product \( \vec{R} \cdot \vec{A} \)**: \[ \vec{R} \cdot \vec{A} = (4(2\hat{i} + \hat{j} + \hat{k})) \cdot (2\hat{i} + \hat{j} + \hat{k}) \] \[ = 4[(2)(2) + (1)(1) + (1)(1)] = 4[4 + 1 + 1] = 4 \times 6 = 24 \] 7. **Find the component of \( \vec{R} \) along \( \vec{A} \)**: \[ \text{Component of } \vec{R} \text{ along } \vec{A} = \frac{\vec{R} \cdot \vec{A}}{|\vec{A}|} \] \[ = \frac{24}{\sqrt{6}} \] 8. **Set the component equal to \( 4\sqrt{x} \)**: \[ \frac{24}{\sqrt{6}} = 4\sqrt{x} \] 9. **Simplify the equation**: \[ 24 = 4\sqrt{x} \cdot \sqrt{6} \] \[ 24 = 4\sqrt{6x} \] \[ 6 = \sqrt{6x} \] 10. **Square both sides**: \[ 36 = 6x \] \[ x = 6 \] ### Final Answer: \[ x = 6 \]

To solve the problem, we need to find the value of \( x \) given the vectors \( \vec{A} \) and \( \vec{B} \), and the condition regarding the magnitude of the component of \( \vec{B} - \vec{A} \) along \( \vec{A} \). ### Step-by-step Solution: 1. **Define the vectors**: \[ \vec{A} = 2\hat{i} + \hat{j} + \hat{k} \] ...
Promotional Banner

Topper's Solved these Questions

  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (S-1)|20 Videos
  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (S-2)|7 Videos
  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (J-A)|7 Videos
  • TEST PAPERS

    ALLEN|Exercise MATHS|14 Videos
  • WAVE OPTICS

    ALLEN|Exercise Exercise 2 (Previous Year Questions)|7 Videos

Similar Questions

Explore conceptually related problems

If vecF=3hati-4hatj+5hatk " and " vecS=6hati+2hatj+5hatk , the find the work done.

If vecF = 3hati + 4hatj+5hatk and vecS=6hati +2hatj+5hatk , the find the work done.

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

If vec(OP)=2hati+3hatj-hatk and vec(OQ)=3hati-4hatj+2hatk find the modulus and direction cosines of vec(PQ) .

If vec(OP)=2hati+3hatj-hatk and vec(OQ)=5hati+4hatj-3hatk . Find vec(PQ) and the direction cosines of vec(PQ) .

Given : vec A = hati + hatj +hatk and vec B =-hati-hatj-hatk What is the angle between (vec A - vec B) and vec A ?

If vec(OA) =2hati+3hatj-4hatk and vec(OB) =hatj+hatk are two vectors through the origin O, find the projection of vec(OB) on vec(OA) .

If in parallelogram ABCD, diagonal vectors are vec(AC)=2hati+3hatj+4hatk and vec(BD)=-6hati+7hatj-2hatk , then find the adjacent side vectors vec(AB) and vec(AD) .

If vec(OA) =2hati+3hatj-4hatk and vec(OB) =hatj+hatk are two vectors through the origin O, find the projection of vec(OA) and vec(OB)

If vec(A) = 3hati +4hatj and vec(B) = 7 hat I +24 hatj , find a vector having the same magnitude as vec(B) and parallel to vec(A) .