Home
Class 12
PHYSICS
Two vectors vecA and vecB are defined as...

Two vectors `vecA` and `vecB` are defined as `vecA=ahati` and `vecB=a( cos omegahati+sin omega hatj)`, were a is a constant and `omega=pi//6 rads^(-1)`. If `|vecA+vecB|=sqrt(3)|vecA-vecB|` at time `t=tau` for the first time, the value of `tau`, in seconds , is _________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given vectors and the condition provided. ### Step 1: Define the vectors We have two vectors defined as: - \(\vec{A} = a \hat{i}\) - \(\vec{B} = a (\cos(\omega t) \hat{i} + \sin(\omega t) \hat{j})\) Where \(a\) is a constant and \(\omega = \frac{\pi}{6} \, \text{rads}^{-1}\). ### Step 2: Find the magnitudes of \(\vec{A} + \vec{B}\) and \(\vec{A} - \vec{B}\) The sum of the vectors is: \[ \vec{A} + \vec{B} = a \hat{i} + a (\cos(\omega t) \hat{i} + \sin(\omega t) \hat{j}) = a(1 + \cos(\omega t)) \hat{i} + a \sin(\omega t) \hat{j} \] The difference of the vectors is: \[ \vec{A} - \vec{B} = a \hat{i} - a (\cos(\omega t) \hat{i} + \sin(\omega t) \hat{j}) = a(1 - \cos(\omega t)) \hat{i} - a \sin(\omega t) \hat{j} \] ### Step 3: Calculate the magnitudes The magnitude of \(\vec{A} + \vec{B}\) is: \[ |\vec{A} + \vec{B}| = \sqrt{(a(1 + \cos(\omega t)))^2 + (a \sin(\omega t))^2} \] \[ = a \sqrt{(1 + \cos(\omega t))^2 + \sin^2(\omega t)} \] Using the identity \((1 + \cos(\omega t))^2 + \sin^2(\omega t) = 1 + 2\cos(\omega t) + \cos^2(\omega t) + \sin^2(\omega t) = 2 + 2\cos(\omega t) = 2(1 + \cos(\omega t))\): \[ |\vec{A} + \vec{B}| = a \sqrt{2(1 + \cos(\omega t))} \] The magnitude of \(\vec{A} - \vec{B}\) is: \[ |\vec{A} - \vec{B}| = \sqrt{(a(1 - \cos(\omega t)))^2 + (-a \sin(\omega t))^2} \] \[ = a \sqrt{(1 - \cos(\omega t))^2 + \sin^2(\omega t)} \] Using the identity \((1 - \cos(\omega t))^2 + \sin^2(\omega t) = 1 - 2\cos(\omega t) + \cos^2(\omega t) + \sin^2(\omega t) = 2 - 2\cos(\omega t) = 2(1 - \cos(\omega t))\): \[ |\vec{A} - \vec{B}| = a \sqrt{2(1 - \cos(\omega t))} \] ### Step 4: Set up the equation According to the problem, we have: \[ |\vec{A} + \vec{B}| = \sqrt{3} |\vec{A} - \vec{B}| \] Substituting the magnitudes we found: \[ a \sqrt{2(1 + \cos(\omega t))} = \sqrt{3} a \sqrt{2(1 - \cos(\omega t))} \] Dividing both sides by \(a\) (assuming \(a \neq 0\)): \[ \sqrt{2(1 + \cos(\omega t))} = \sqrt{3} \sqrt{2(1 - \cos(\omega t))} \] Squaring both sides: \[ 2(1 + \cos(\omega t)) = 3 \cdot 2(1 - \cos(\omega t)) \] \[ 1 + \cos(\omega t) = 3(1 - \cos(\omega t)) \] \[ 1 + \cos(\omega t) = 3 - 3\cos(\omega t) \] \[ 4\cos(\omega t) = 2 \] \[ \cos(\omega t) = \frac{1}{2} \] ### Step 5: Solve for \(\omega t\) The angle whose cosine is \(\frac{1}{2}\) is: \[ \omega t = \frac{\pi}{3} + 2n\pi \quad \text{or} \quad \omega t = -\frac{\pi}{3} + 2n\pi \quad \text{for } n \in \mathbb{Z} \] ### Step 6: Substitute \(\omega\) Since \(\omega = \frac{\pi}{6}\): \[ \frac{\pi}{6} t = \frac{\pi}{3} \] Solving for \(t\): \[ t = \frac{\pi/3}{\pi/6} = 2 \text{ seconds} \] Thus, the value of \(\tau\) is \(2\) seconds.
Promotional Banner

Topper's Solved these Questions

  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (J-M)|1 Videos
  • TEST PAPERS

    ALLEN|Exercise MATHS|14 Videos
  • WAVE OPTICS

    ALLEN|Exercise Exercise 2 (Previous Year Questions)|7 Videos

Similar Questions

Explore conceptually related problems

Two vectors vecA and vecB are such that vecA+vecB=vecA-vecB . Then

If |vecA xx vecB| = sqrt3 vecA *vecB , then the value of |vecA + vecB| is :

if veca and vecb are unit vectors such that veca. vecb = cos theta , then the value of | veca + vecb| , is

The angle between vectors (vecA xx vecB) and (vecB xx vecA) is :

vecA and vecB are two vectors and theta is the angle between them, if |vecA xx vecB|=sqrt(3)(vecA.vecB) the value of theta is:-

If |vecA xx vecB| = vecA.vecB then the angle between vecA and vecB is :

If the vectors veca and vecb are mutually perpendicular, then veca xx {veca xx {veca xx {veca xx vecb}} is equal to:

If |vecA xx vecB| = |vecA*vecB| , then the angle between vecA and vecB will be :

vecA and vecB are two vectors. (vecA + vecB) xx (vecA - vecB) can be expressed as :

Two vectors vec A and vecB have equal magnitudes.If magnitude of (vecA+vecB) is equal to n times of the magnitude of (vecA-vecB) then the angle between vecA and vecB is :-