If `I_1/I_2` =25 then find the value of `(I_max - I_min)/ (I_max+I_min)`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we need to find the value of \((I_{\text{max}} - I_{\text{min}}) / (I_{\text{max}} + I_{\text{min}})\) given that the ratio of intensities \(I_1/I_2 = 25\).
### Step-by-Step Solution:
1. **Identify the Intensities**:
Given the ratio \(I_1/I_2 = 25\), we can assign:
\[
I_1 = 25k \quad \text{and} \quad I_2 = k
\]
for some constant \(k\).
2. **Calculate \(I_{\text{max}}\)**:
The formula for maximum intensity \(I_{\text{max}}\) is given by:
\[
I_{\text{max}} = (\sqrt{I_1} + \sqrt{I_2})^2
\]
Substituting the values of \(I_1\) and \(I_2\):
\[
I_{\text{max}} = (\sqrt{25k} + \sqrt{k})^2 = (5\sqrt{k} + \sqrt{k})^2 = (6\sqrt{k})^2 = 36k
\]
3. **Calculate \(I_{\text{min}}\)**:
The formula for minimum intensity \(I_{\text{min}}\) is given by:
\[
I_{\text{min}} = (\sqrt{I_1} - \sqrt{I_2})^2
\]
Substituting the values of \(I_1\) and \(I_2\):
\[
I_{\text{min}} = (\sqrt{25k} - \sqrt{k})^2 = (5\sqrt{k} - \sqrt{k})^2 = (4\sqrt{k})^2 = 16k
\]
4. **Calculate \(I_{\text{max}} - I_{\text{min}}\)**:
Now, we find \(I_{\text{max}} - I_{\text{min}}\):
\[
I_{\text{max}} - I_{\text{min}} = 36k - 16k = 20k
\]
5. **Calculate \(I_{\text{max}} + I_{\text{min}}\)**:
Next, we find \(I_{\text{max}} + I_{\text{min}}\):
\[
I_{\text{max}} + I_{\text{min}} = 36k + 16k = 52k
\]
6. **Calculate the Final Ratio**:
Now we can find the ratio:
\[
\frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}} = \frac{20k}{52k} = \frac{20}{52} = \frac{5}{13}
\]
### Final Answer:
\[
\frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}} = \frac{5}{13}
\]
Topper's Solved these Questions
TEST PAPER
ALLEN|Exercise Exercise (Physics)|330 Videos
SIMPLE HARMONIC MOTION
ALLEN|Exercise Example|1 Videos
TEST PAPER 1
ALLEN|Exercise PHYSICS|11 Videos
Similar Questions
Explore conceptually related problems
If I_1/I_2 =4 then find the value of (I_max - I_min)/ (I_max+I_min)
If I_1/I_2 =9 then find the value of (I_max - I_min)/ (I_max+I_min) A ̅
If I_1/I_2 =16 then find the value of (I_max - I_min)/ (I_max+I_min)
Two coherent sources of intensity ratio beta^2 interfere. Then, the value of (I_(max)- I_(min))//(I_(max)+I_(min)) is
The interference pattern is obtained with two coherent light sources of intensity ratio n. In the interference patten, the ratio (I_(max)-I_(min))/(I_(max)+I_(min)) will be
The interference pattern is obtained with two coherent light sources of intensity ration n. In the interference pattern, the ratio (I_(max)-I_(min))/(I_(max)+I_(min)) will be
If Sigma_(i=1)^(2n) cos^(-1) x_(i) = 0 ,then find the value of Sigma_(i=1)^(2n) x_(i)
Find the value of (1+ i)^(6) + (1-i)^(6)
If the ratio of the intensity of two coherent sources is 4 then the visibility [(I_(max)-I_(min))//(I_(max)+I_(min))] of the fringes is
Two coherent sources of light of intensity ratio beta produce interference pattern. Prove that in the interferencepattern (I_(max) - I_(min))/(I_(max) + (I_(min))) = (2 sqrt beta)/(1 + beta) where I_(max) and I_(min) are maximum and mininum intensities in the resultant wave.