Home
Class 12
PHYSICS
If I1/I2 =25 then find the value of (Ima...

If `I_1/I_2` =25 then find the value of `(I_max - I_min)/ (I_max+I_min)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((I_{\text{max}} - I_{\text{min}}) / (I_{\text{max}} + I_{\text{min}})\) given that the ratio of intensities \(I_1/I_2 = 25\). ### Step-by-Step Solution: 1. **Identify the Intensities**: Given the ratio \(I_1/I_2 = 25\), we can assign: \[ I_1 = 25k \quad \text{and} \quad I_2 = k \] for some constant \(k\). 2. **Calculate \(I_{\text{max}}\)**: The formula for maximum intensity \(I_{\text{max}}\) is given by: \[ I_{\text{max}} = (\sqrt{I_1} + \sqrt{I_2})^2 \] Substituting the values of \(I_1\) and \(I_2\): \[ I_{\text{max}} = (\sqrt{25k} + \sqrt{k})^2 = (5\sqrt{k} + \sqrt{k})^2 = (6\sqrt{k})^2 = 36k \] 3. **Calculate \(I_{\text{min}}\)**: The formula for minimum intensity \(I_{\text{min}}\) is given by: \[ I_{\text{min}} = (\sqrt{I_1} - \sqrt{I_2})^2 \] Substituting the values of \(I_1\) and \(I_2\): \[ I_{\text{min}} = (\sqrt{25k} - \sqrt{k})^2 = (5\sqrt{k} - \sqrt{k})^2 = (4\sqrt{k})^2 = 16k \] 4. **Calculate \(I_{\text{max}} - I_{\text{min}}\)**: Now, we find \(I_{\text{max}} - I_{\text{min}}\): \[ I_{\text{max}} - I_{\text{min}} = 36k - 16k = 20k \] 5. **Calculate \(I_{\text{max}} + I_{\text{min}}\)**: Next, we find \(I_{\text{max}} + I_{\text{min}}\): \[ I_{\text{max}} + I_{\text{min}} = 36k + 16k = 52k \] 6. **Calculate the Final Ratio**: Now we can find the ratio: \[ \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}} = \frac{20k}{52k} = \frac{20}{52} = \frac{5}{13} \] ### Final Answer: \[ \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}} = \frac{5}{13} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If I_1/I_2 =4 then find the value of (I_max - I_min)/ (I_max+I_min)

If I_1/I_2 =9 then find the value of (I_max - I_min)/ (I_max+I_min) A ̅

If I_1/I_2 =16 then find the value of (I_max - I_min)/ (I_max+I_min)

Two coherent sources of intensity ratio beta^2 interfere. Then, the value of (I_(max)- I_(min))//(I_(max)+I_(min)) is

The interference pattern is obtained with two coherent light sources of intensity ratio n. In the interference patten, the ratio (I_(max)-I_(min))/(I_(max)+I_(min)) will be

The interference pattern is obtained with two coherent light sources of intensity ration n. In the interference pattern, the ratio (I_(max)-I_(min))/(I_(max)+I_(min)) will be

If Sigma_(i=1)^(2n) cos^(-1) x_(i) = 0 ,then find the value of Sigma_(i=1)^(2n) x_(i)

Find the value of (1+ i)^(6) + (1-i)^(6)

If the ratio of the intensity of two coherent sources is 4 then the visibility [(I_(max)-I_(min))//(I_(max)+I_(min))] of the fringes is

Two coherent sources of light of intensity ratio beta produce interference pattern. Prove that in the interferencepattern (I_(max) - I_(min))/(I_(max) + (I_(min))) = (2 sqrt beta)/(1 + beta) where I_(max) and I_(min) are maximum and mininum intensities in the resultant wave.