To find the values of the trigonometric functions given in the question, we will solve each part step by step.
### Solution:
**(i) Find `tan(-30°`:**
Using the property of tangent:
\[
\tan(-\theta) = -\tan(\theta)
\]
So,
\[
\tan(-30°) = -\tan(30°)
\]
We know that:
\[
\tan(30°) = \frac{1}{\sqrt{3}}
\]
Thus,
\[
\tan(-30°) = -\frac{1}{\sqrt{3}}
\]
**(ii) Find `sin(120°)`:**
We can express \(120°\) as:
\[
120° = 90° + 30°
\]
Using the sine addition formula:
\[
\sin(90° + \theta) = \cos(\theta)
\]
So,
\[
\sin(120°) = \cos(30°)
\]
And we know:
\[
\cos(30°) = \frac{\sqrt{3}}{2}
\]
Thus,
\[
\sin(120°) = \frac{\sqrt{3}}{2}
\]
**(iii) Find `sin(135°)`:**
We can express \(135°\) as:
\[
135° = 90° + 45°
\]
Using the sine addition formula:
\[
\sin(90° + \theta) = \cos(\theta)
\]
So,
\[
\sin(135°) = \cos(45°)
\]
And we know:
\[
\cos(45°) = \frac{1}{\sqrt{2}}
\]
Thus,
\[
\sin(135°) = \frac{1}{\sqrt{2}}
\]
**(iv) Find `cos(150°)`:**
We can express \(150°\) as:
\[
150° = 180° - 30°
\]
Using the cosine subtraction formula:
\[
\cos(180° - \theta) = -\cos(\theta)
\]
So,
\[
\cos(150°) = -\cos(30°)
\]
And we know:
\[
\cos(30°) = \frac{\sqrt{3}}{2}
\]
Thus,
\[
\cos(150°) = -\frac{\sqrt{3}}{2}
\]
**(v) Find `sin(270°)`:**
We can express \(270°\) as:
\[
270° = 180° + 90°
\]
Using the sine addition formula:
\[
\sin(180° + \theta) = -\sin(\theta)
\]
So,
\[
\sin(270°) = -\sin(90°)
\]
And we know:
\[
\sin(90°) = 1
\]
Thus,
\[
\sin(270°) = -1
\]
**(vi) Find `cos(270°)`:**
We can express \(270°\) as:
\[
270° = 180° + 90°
\]
Using the cosine addition formula:
\[
\cos(180° + \theta) = -\cos(\theta)
\]
So,
\[
\cos(270°) = -\cos(90°)
\]
And we know:
\[
\cos(90°) = 0
\]
Thus,
\[
\cos(270°) = 0
\]
### Final Answers:
1. \( \tan(-30°) = -\frac{1}{\sqrt{3}} \)
2. \( \sin(120°) = \frac{\sqrt{3}}{2} \)
3. \( \sin(135°) = \frac{1}{\sqrt{2}} \)
4. \( \cos(150°) = -\frac{\sqrt{3}}{2} \)
5. \( \sin(270°) = -1 \)
6. \( \cos(270°) = 0 \)
To find the values of the trigonometric functions given in the question, we will solve each part step by step.
### Solution:
**(i) Find `tan(-30°`:**
Using the property of tangent:
\[
...
Topper's Solved these Questions
BASIC MATHS
ALLEN|Exercise Exersice-03|7 Videos
BASIC MATHS
ALLEN|Exercise ASSERTION-REASON|11 Videos
AIIMS 2019
ALLEN|Exercise PHYSICS|40 Videos
CIRCULAR MOTION
ALLEN|Exercise EXERCISE (J-A)|6 Videos
Similar Questions
Explore conceptually related problems
Find the value of (i) cos(-60^(@)) " " (ii) tan(210^(@))" " (iii) sin (300^(@))" " (iv) cos(120^(@))
Find the value of : sin30^(@)cos30^(@)
Find the value of : sin30^(@)cos30^(@)
Find the value of : (i) sin 30^(@)-cos 60^(@) (ii) sin 0^(@)+cos 0^(@)
Find the value of : (i) sin 30^(@)+cos 60^(@) (ii) sin 0^(@)-cos 0^(@)
Find the approximate values of (i) sin 1^(@) (ii) tan 2^(@) (iii) cos 1^(@) .
sin 120^(@) cos 150^(@)- cos 240^(@) sin 330^(@) =
Find the value of (i) sin 22^(@) 30' (ii) cos 22^(@) 30' (iii) tan 22^(@) 30'
Find the value of 2sin30^(@)cos30^(@) .
Calculate the value of (i) sin 15^(@) " "(ii) cos 15^(@)" "(iii) tan 15^(@) (iv) sin 75^(@) " "(v) cos 75^(@) " "(vi) tan 75^(@)