Home
Class 12
PHYSICS
Find the derivatives of the following : ...

Find the derivatives of the following :
(i) `(x^(3)3x^(2)+4)(4x^(5)+x^(2)-1)` (ii) `(9x^(2))/(x-3)`

A

`sin 74^(@)`

B

`cos 106^(@)`

C

`sin 15^(@)`

D

`cos 75^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivatives of the given functions, we will use the product rule and the quotient rule of differentiation. ### Part (i): Find the derivative of \( (x^3 + 4)(4x^5 + x^2 - 1) \) 1. **Identify the functions**: Let \( u = x^3 + 4 \) and \( v = 4x^5 + x^2 - 1 \). 2. **Differentiate \( u \) and \( v \)**: - \( u' = \frac{d}{dx}(x^3 + 4) = 3x^2 \) - \( v' = \frac{d}{dx}(4x^5 + x^2 - 1) = 20x^4 + 2x \) 3. **Apply the product rule**: The product rule states that \( \frac{d}{dx}(uv) = u'v + uv' \). - Thus, the derivative \( \frac{d}{dx}[(x^3 + 4)(4x^5 + x^2 - 1)] = (3x^2)(4x^5 + x^2 - 1) + (x^3 + 4)(20x^4 + 2x) \). 4. **Expand the expression**: - First term: \( 3x^2(4x^5 + x^2 - 1) = 12x^7 + 3x^4 - 3x^2 \) - Second term: \( (x^3 + 4)(20x^4 + 2x) = x^3(20x^4 + 2x) + 4(20x^4 + 2x) = 20x^7 + 2x^4 + 80x^4 + 8x = 20x^7 + 82x^4 + 8x \) 5. **Combine like terms**: - Combine \( 12x^7 + 20x^7 = 32x^7 \) - Combine \( 3x^4 + 82x^4 = 85x^4 \) - The final derivative is \( 32x^7 + 85x^4 + 5x^2 \). ### Final answer for part (i): \[ \frac{d}{dx}[(x^3 + 4)(4x^5 + x^2 - 1)] = 32x^7 + 85x^4 + 5x^2 \] --- ### Part (ii): Find the derivative of \( \frac{9x^2}{x - 3} \) 1. **Identify the functions**: Let \( u = 9x^2 \) and \( v = x - 3 \). 2. **Differentiate \( u \) and \( v \)**: - \( u' = \frac{d}{dx}(9x^2) = 18x \) - \( v' = \frac{d}{dx}(x - 3) = 1 \) 3. **Apply the quotient rule**: The quotient rule states that \( \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v u' - u v'}{v^2} \). - Thus, the derivative is \( \frac{(x - 3)(18x) - (9x^2)(1)}{(x - 3)^2} \). 4. **Expand the expression**: - Numerator: \( (x - 3)(18x) - 9x^2 = 18x^2 - 54x - 9x^2 = 9x^2 - 54x \) 5. **Final expression**: - The derivative is \( \frac{9x^2 - 54x}{(x - 3)^2} \). ### Final answer for part (ii): \[ \frac{d}{dx}\left(\frac{9x^2}{x - 3}\right) = \frac{9x^2 - 54x}{(x - 3)^2} \] ---

To find the derivatives of the given functions, we will use the product rule and the quotient rule of differentiation. ### Part (i): Find the derivative of \( (x^3 + 4)(4x^5 + x^2 - 1) \) 1. **Identify the functions**: Let \( u = x^3 + 4 \) and \( v = 4x^5 + x^2 - 1 \). 2. **Differentiate \( u \) and \( v \)**: - \( u' = \frac{d}{dx}(x^3 + 4) = 3x^2 \) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Find the derivative of the following function with respect to 'X' (i) x^(4) (ii) x^(-3) (iii) 3x^(2)

Find the product of the following binomials; (i) (x^4+2/(x^2))(x^4-2/(x^2)) (ii) (x^3+1/(x^3))\ (x^3-1/(x^3))

Find the derivative of the following functions w.r.t x (i) sqrt(3x -2) for x gt 2/3 (ii) (2x^(2) +3)^(5/3) (x+5)^(-1/3)

Find the derivative of (x^(3) - 3x^(2) + 4)(4x^(5) + x^(2) -1) :

Obtain the different coefficient of the following : (i) (x-1)(2x+5) (ii) (1)/(2x+1) (iii) (3x+4)/(4x+5) (iv) (x^(2))/(x^(3)+1)

Find the derivative of the following functions (i) x^(3) + cos x + sqrt(x) (ii) (sqrt(x) + 1)^(2) (iii) (x^(2) + 2x - 3)(x + 1)

Find the derivative of (i) 2x-3/4 (ii) (5x^3+3x-1)(x-1) (iii) x^(-3)(5+3x)

Factorise the following (i) 9x^(2)-12x+3 (ii) 9x^(2)-12x+4

Find the derivative of f(x) = 2 x^(3) + 3x^(2) + 5x + 9 at x = 2

Find the derivative of the following functions from the first principle (i) x^(3) + 4x^(2) (ii) sqrt(x + 1)