Find the derivatives of the following : (i) `(x^(3)3x^(2)+4)(4x^(5)+x^(2)-1)` (ii) `(9x^(2))/(x-3)`
A
`sin 74^(@)`
B
`cos 106^(@)`
C
`sin 15^(@)`
D
`cos 75^(@)`
Text Solution
AI Generated Solution
The correct Answer is:
To find the derivatives of the given functions, we will use the product rule and the quotient rule of differentiation.
### Part (i): Find the derivative of \( (x^3 + 4)(4x^5 + x^2 - 1) \)
1. **Identify the functions**: Let \( u = x^3 + 4 \) and \( v = 4x^5 + x^2 - 1 \).
2. **Differentiate \( u \) and \( v \)**:
- \( u' = \frac{d}{dx}(x^3 + 4) = 3x^2 \)
- \( v' = \frac{d}{dx}(4x^5 + x^2 - 1) = 20x^4 + 2x \)
3. **Apply the product rule**: The product rule states that \( \frac{d}{dx}(uv) = u'v + uv' \).
- Thus, the derivative \( \frac{d}{dx}[(x^3 + 4)(4x^5 + x^2 - 1)] = (3x^2)(4x^5 + x^2 - 1) + (x^3 + 4)(20x^4 + 2x) \).
4. **Expand the expression**:
- First term: \( 3x^2(4x^5 + x^2 - 1) = 12x^7 + 3x^4 - 3x^2 \)
- Second term: \( (x^3 + 4)(20x^4 + 2x) = x^3(20x^4 + 2x) + 4(20x^4 + 2x) = 20x^7 + 2x^4 + 80x^4 + 8x = 20x^7 + 82x^4 + 8x \)
5. **Combine like terms**:
- Combine \( 12x^7 + 20x^7 = 32x^7 \)
- Combine \( 3x^4 + 82x^4 = 85x^4 \)
- The final derivative is \( 32x^7 + 85x^4 + 5x^2 \).
### Final answer for part (i):
\[
\frac{d}{dx}[(x^3 + 4)(4x^5 + x^2 - 1)] = 32x^7 + 85x^4 + 5x^2
\]
---
### Part (ii): Find the derivative of \( \frac{9x^2}{x - 3} \)
1. **Identify the functions**: Let \( u = 9x^2 \) and \( v = x - 3 \).
2. **Differentiate \( u \) and \( v \)**:
- \( u' = \frac{d}{dx}(9x^2) = 18x \)
- \( v' = \frac{d}{dx}(x - 3) = 1 \)
3. **Apply the quotient rule**: The quotient rule states that \( \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v u' - u v'}{v^2} \).
- Thus, the derivative is \( \frac{(x - 3)(18x) - (9x^2)(1)}{(x - 3)^2} \).
4. **Expand the expression**:
- Numerator: \( (x - 3)(18x) - 9x^2 = 18x^2 - 54x - 9x^2 = 9x^2 - 54x \)
5. **Final expression**:
- The derivative is \( \frac{9x^2 - 54x}{(x - 3)^2} \).
### Final answer for part (ii):
\[
\frac{d}{dx}\left(\frac{9x^2}{x - 3}\right) = \frac{9x^2 - 54x}{(x - 3)^2}
\]
---
To find the derivatives of the given functions, we will use the product rule and the quotient rule of differentiation.
### Part (i): Find the derivative of \( (x^3 + 4)(4x^5 + x^2 - 1) \)
1. **Identify the functions**: Let \( u = x^3 + 4 \) and \( v = 4x^5 + x^2 - 1 \).
2. **Differentiate \( u \) and \( v \)**:
- \( u' = \frac{d}{dx}(x^3 + 4) = 3x^2 \)
...
Topper's Solved these Questions
BASIC MATHS
ALLEN|Exercise Exersice-03|7 Videos
BASIC MATHS
ALLEN|Exercise ASSERTION-REASON|11 Videos
AIIMS 2019
ALLEN|Exercise PHYSICS|40 Videos
CIRCULAR MOTION
ALLEN|Exercise EXERCISE (J-A)|6 Videos
Similar Questions
Explore conceptually related problems
Find the derivative of the following function with respect to 'X' (i) x^(4) (ii) x^(-3) (iii) 3x^(2)
Find the product of the following binomials; (i) (x^4+2/(x^2))(x^4-2/(x^2)) (ii) (x^3+1/(x^3))\ (x^3-1/(x^3))
Find the derivative of the following functions w.r.t x (i) sqrt(3x -2) for x gt 2/3 (ii) (2x^(2) +3)^(5/3) (x+5)^(-1/3)
Find the derivative of (x^(3) - 3x^(2) + 4)(4x^(5) + x^(2) -1) :
Obtain the different coefficient of the following : (i) (x-1)(2x+5) (ii) (1)/(2x+1) (iii) (3x+4)/(4x+5) (iv) (x^(2))/(x^(3)+1)
Find the derivative of the following functions (i) x^(3) + cos x + sqrt(x) (ii) (sqrt(x) + 1)^(2) (iii) (x^(2) + 2x - 3)(x + 1)
Find the derivative of (i) 2x-3/4 (ii) (5x^3+3x-1)(x-1) (iii) x^(-3)(5+3x)
Factorise the following (i) 9x^(2)-12x+3 (ii) 9x^(2)-12x+4
Find the derivative of f(x) = 2 x^(3) + 3x^(2) + 5x + 9 at x = 2
Find the derivative of the following functions from the first principle (i) x^(3) + 4x^(2) (ii) sqrt(x + 1)