Home
Class 12
PHYSICS
Evaluate int (x^(2)-cos x+(1)/(x))dx...

Evaluate `int (x^(2)-cos x+(1)/(x))dx`

A

`pi/2 rad`

B

`pi/4 rad`

C

`pi/3 rad`

D

`pi/6 rad`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int (x^2 - \cos x + \frac{1}{x}) \, dx \), we can break it down into simpler parts. ### Step-by-step Solution: 1. **Break down the integral**: We can separate the integral into three distinct parts: \[ \int (x^2 - \cos x + \frac{1}{x}) \, dx = \int x^2 \, dx - \int \cos x \, dx + \int \frac{1}{x} \, dx \] 2. **Integrate \( x^2 \)**: Using the formula for the integral of \( x^n \): \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \] For \( n = 2 \): \[ \int x^2 \, dx = \frac{x^{2+1}}{2+1} = \frac{x^3}{3} \] 3. **Integrate \( -\cos x \)**: The integral of \( \cos x \) is: \[ \int \cos x \, dx = \sin x \] Therefore, \[ -\int \cos x \, dx = -\sin x \] 4. **Integrate \( \frac{1}{x} \)**: The integral of \( \frac{1}{x} \) is: \[ \int \frac{1}{x} \, dx = \ln |x| \] 5. **Combine the results**: Now, we can combine all the parts: \[ \int (x^2 - \cos x + \frac{1}{x}) \, dx = \frac{x^3}{3} - \sin x + \ln |x| + C \] ### Final Answer: Thus, the final result of the integral is: \[ \int (x^2 - \cos x + \frac{1}{x}) \, dx = \frac{x^3}{3} - \sin x + \ln |x| + C \]

To evaluate the integral \( \int (x^2 - \cos x + \frac{1}{x}) \, dx \), we can break it down into simpler parts. ### Step-by-step Solution: 1. **Break down the integral**: We can separate the integral into three distinct parts: \[ \int (x^2 - \cos x + \frac{1}{x}) \, dx = \int x^2 \, dx - \int \cos x \, dx + \int \frac{1}{x} \, dx ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Evaluate int x^(2) cos x dx

Evaluate: int(1+x^2)cos2x\ dx

Evaluate: int1/(x^2)cos^2(1/x)dx

Evaluate: (i) int1/(x^2)cos^2(1/x)\ dx (ii) intsec^4xtanx\ dx

Evaluate: (i) int1/(x^2)cos^2(1/x)\ dx (ii) intsec^4xtanx\ dx

Evaluate: inte^(2x)cos^2x\ dx

Evaluate: int 2( 1-cos2x) dx

Evaluate int x cos x dx.

Evaluate: int1/(sinx(2cos^2x-1)dx

Evaluate: int(sin x)/(cos x(1+cos x))dx