To evaluate the integral \( \int (x^2 - \cos x + \frac{1}{x}) \, dx \), we can break it down into simpler parts.
### Step-by-step Solution:
1. **Break down the integral**:
We can separate the integral into three distinct parts:
\[
\int (x^2 - \cos x + \frac{1}{x}) \, dx = \int x^2 \, dx - \int \cos x \, dx + \int \frac{1}{x} \, dx
\]
2. **Integrate \( x^2 \)**:
Using the formula for the integral of \( x^n \):
\[
\int x^n \, dx = \frac{x^{n+1}}{n+1} + C
\]
For \( n = 2 \):
\[
\int x^2 \, dx = \frac{x^{2+1}}{2+1} = \frac{x^3}{3}
\]
3. **Integrate \( -\cos x \)**:
The integral of \( \cos x \) is:
\[
\int \cos x \, dx = \sin x
\]
Therefore,
\[
-\int \cos x \, dx = -\sin x
\]
4. **Integrate \( \frac{1}{x} \)**:
The integral of \( \frac{1}{x} \) is:
\[
\int \frac{1}{x} \, dx = \ln |x|
\]
5. **Combine the results**:
Now, we can combine all the parts:
\[
\int (x^2 - \cos x + \frac{1}{x}) \, dx = \frac{x^3}{3} - \sin x + \ln |x| + C
\]
### Final Answer:
Thus, the final result of the integral is:
\[
\int (x^2 - \cos x + \frac{1}{x}) \, dx = \frac{x^3}{3} - \sin x + \ln |x| + C
\]
To evaluate the integral \( \int (x^2 - \cos x + \frac{1}{x}) \, dx \), we can break it down into simpler parts.
### Step-by-step Solution:
1. **Break down the integral**:
We can separate the integral into three distinct parts:
\[
\int (x^2 - \cos x + \frac{1}{x}) \, dx = \int x^2 \, dx - \int \cos x \, dx + \int \frac{1}{x} \, dx
...
Topper's Solved these Questions
BASIC MATHS
ALLEN|Exercise Exersice-03|7 Videos
BASIC MATHS
ALLEN|Exercise ASSERTION-REASON|11 Videos
AIIMS 2019
ALLEN|Exercise PHYSICS|40 Videos
CIRCULAR MOTION
ALLEN|Exercise EXERCISE (J-A)|6 Videos
Similar Questions
Explore conceptually related problems
Evaluate int x^(2) cos x dx
Evaluate: int(1+x^2)cos2x\ dx
Evaluate: int1/(x^2)cos^2(1/x)dx
Evaluate: (i) int1/(x^2)cos^2(1/x)\ dx (ii) intsec^4xtanx\ dx
Evaluate: (i) int1/(x^2)cos^2(1/x)\ dx (ii) intsec^4xtanx\ dx