Evaluate the following integrals (i) `int_(R)^(oo)(GMm)/(x^(2))dx` (ii) `int_(r_(1))^(r_(2)) -k(q_1q_2)/(x^(2))dx` (iii) `int_(u)^(v) Mv dv` (iv) `int_(0)^(oo) x^(-1//2) dx` (v) `int_(0)^(pi//2) sinx dx ` (vi) `int_(0)^(pi//2) cosx dx` (vii) `int_(-pi//2)^(pi//2) cos x dx`
A
`(2, -2)`
B
`(2, 2)`
C
`(-2, 2)`
D
`(-2, -2)`
Text Solution
Verified by Experts
The correct Answer is:
B, D
Let catching point be `(x_(1), y_(1))` then, `y_(1)-x_(1)=0` and `x_(1)^(2)+y_(1)^(2)=8` Therefore, `2x_(1)^(2)=8 rArr x_(1)^(2)=4 rArr x_(1)=+-2`, So possible points are `(2, 2)` and `(-2, -2)`.
Topper's Solved these Questions
BASIC MATHS
ALLEN|Exercise Exersice-03|7 Videos
BASIC MATHS
ALLEN|Exercise ASSERTION-REASON|11 Videos
AIIMS 2019
ALLEN|Exercise PHYSICS|40 Videos
CIRCULAR MOTION
ALLEN|Exercise EXERCISE (J-A)|6 Videos
Similar Questions
Explore conceptually related problems
int_(0)^(pi/2) cos 2x dx
int_(0)^(pi//2) x^(2) cos x dx
int_(0)^(pi) [2sin x]dx=
int_(0)^(pi/2) cos^(2) x dx
int_(0)^(pi//2) x sin x cos x dx
Evaluate: int_(0)^(pi//2) cos2x dx
(i) int_(0)^(pi//2) x sin x cos x dx (ii) int_(0)^(pi//6) (2+3x^(2)) cos 3x dx
int_(0)^(pi//2) x sinx cos x dx=?
(i) int_(0)^(pi//2) x cos x dx (i) int_(1)^(3) x. log x dx
Evaluate the following integral: int_(-pi)^pi(2x(1+sinx))/(1+cos^2dx)dx